Midterm exam Topologie en Meetkunde (WISB341). A. Henriques, Mar 2012. Do not simply provide answers: justify all your assertions.

Problem 1 State the definition of a manifold.

Prove that if M and N are manifolds, then their product $M \times N$ is also a manifold.

[2pt] [1pt]

[1pt]

Problem 2 State the classification theorem for compact surfaces.

[3pt] |1pt]

Let Σ be the surface obtained by glueing the sides of a regular 16-gon according to the following pattern:

To which surface in the classification is Σ homeomorphic?

(2pt)

Problem 3 Given two natural numbers m < n, the product $S^m \times S^n$ of the m-dimensional sphere with the n-dimensional sphere is a CW-complex with four cells.

What are the dimensions of those cells?

[lpt] [lpt]

Describe the m-skeleton of that CW complex.

[lpt]

Describe the n-skeleton of that CW complex.

[2pt] [1pt]

Problem 4 State the definition of homotopy equivalence.

[lpt]

Prove that if X and Y are two spaces that are homotopy equivalent, then the products $X \times S^1$ and $Y \times S^1$ are also homotopy equivalent.

Problem 5 Consider a triangulation of $T^2 \# T^2$ such that at every vertex, exactly seven triangles meet. How many triangles are there in total in that triangulation?

Problem 6 The surface $T^2 \# T^2$ admits a CW complex structure whose 1-skeleton is the following graph:

Describe an attaching map $f:S^1\to \Gamma$ such that $\Gamma\cup_f e_2=T^2\#T^2$.

[2pt]