Retake exam Topologie en Meetkunde (WISB341).

A. Henriques, Aug 2012.

Do not simply provide answers: justify all your assertions.

Problem 1 State the classification theorem for compact 2-dimensional manifolds (no boundary).

[4pt] [1pt]

Consider the 2-dimensional manifold built by glueing together the following ten triangles:

What is the Euler characteristic of that manifold? Is that manifold orientable?

[1pt]

[1pt]

To which manifold in the classification is the above manifold homeomorphic?

[1pt]

Solution: Every compact connected surface is homeomorphic to S^2 , a connected sum of copies of P^2 , or a connected sum of copies of T^2 . Moreover, the surfaces in the above list are pairwise non-homeomorphic. The manifold above has 10 triangles, 15 edges, and 6 vertices. Its Euler characteristic is therefore equal to 10 - 15 + 6 = 1. The only manifold in the classification that has Euler characteristic 1 is P^2 , which is not orientable. That manifold is therefore not orientable.

Problem 2 Let X be a topological space.

[4pt]

Define the group $\pi_2(X)$ (make sure to explain what the underlying set of $\pi_2(X)$ is, what the product map $\pi_2(X) \times \pi_2(X) \to \pi_2(X)$ is, and what the inverse map $\pi_2(X) \to \pi_2(X)$ is.)

[3pt]

Prove that the group $\pi_2(X)$ is commutative.

[1pt]

Solution: $\pi_2(X)$ is the set of homotopy classes of maps $f:[0,1]^2 \to X$ that send $\partial[0,1]^2$ to the base point of X, where the homotopies are taken relatively to $\partial[0,1]^2$. The product of [f] and [g] is defined by cutting $[0,1]^2$ into two halves, sending the first half to X by a suitably reparametrized version of f, and sending the second half to f by a suitably reparametrized version of f. The inverse of f is given by precomposing the map f by the map f by the map f into f into

Problem 3 Define what it means for two spaces to be homotopy equivalent. Show that the following two spaces are homotopy equivalent:

[3pt] [1pt]

[1pt]

- The sphere S^2 minus n points.
- The wedge of n-1 copies of S^1 .

Show that the following two spaces are not homotopy equivalent:

[1pt]

- The Möbius band.
- The projective plane P^2 .

Solution: Two spaces X and Y are homotopy equivalent is there exist maps $X \to Y$ and $Y \to X$ such that the composites $X \to Y \to X$ and $Y \to X \to Y$ are homotopic to Id_X and Id_Y , respectively. S^2 minus n points is homeomorphic to \mathbb{R}^2 minus n-1 points, which deformation retracts onto a wedge of n-1 copies of S^1 . The fundamental group of the Möbius band is \mathbb{Z} , while that of the projective plane is $\mathbb{Z}/2$. The two spaces are therefore not homotopy equivalent.

Problem 4 Pick a triangulation of the torus, describe the corresponding chain complex, and use it to compute the homology groups of T^2 .

Solution: One can take a triangulation with two triangles, three edges and one vertex. The chain complex is $0 \leftarrow \mathbb{Z} \leftarrow \mathbb{Z}^3 \leftarrow \mathbb{Z}^2 \leftarrow 0$. The first boundary map $\mathbb{Z} \leftarrow \mathbb{Z}^3$ is zero, from it follows that $H_0(T^2) = \mathbb{Z}$. The second boundary map $\mathbb{Z}^3 \leftarrow \mathbb{Z}^2$ is given by $(a,b) \mapsto (a-b,a-b,a-b)$. Its kernel is one dimensional, from which we conclude that $H_2(T^2) = \mathbb{Z}$. Its image is the set $\{(x,x,x)|x \in \mathbb{Z}\}$, and $H_1(T^2) = \mathbb{Z}^3/\{(x,x,x)\} \cong \mathbb{Z}^2$.

Problem 5 Let $X := S^2 \vee T^2$. Write down X as a CW-complex, describe the attaching maps, and use them to compute its fundamental group. Describe the universal cover of X.

Solution: X has one 0-cell, two 1-cells (call them), and two 2-cells. The attaching map of the first 2-cell is given by $aba^{-1}b^{-1}$, while the attaching map of the second 2-cell is the constant map onto the base point. The fundamental group is given by $\langle a, b | aba^{-1}b^{-1}, e \rangle = \langle a, b | aba^{-1}b^{-1} \rangle = \mathbb{Z}^2$. The universal cover is \mathbb{R}^2 with a sphere attached to it at every point with integral coordinates.

Problem 6 Construct a space whose first homotopy group is isomorphic to the group $(\mathbb{Q}, +)$ of rational numbers.

Solution: $\langle a, b, c, d, e, f, g, h.... | a = b^2, b = c^3, c = d^4, d = e^5, ... \rangle$ is a presentation of $(\mathbb{Q}, +)$. To turn that presentation into a space whose first homotopy group is \mathbb{Q} , take an infinite wedge of copies of S^1 , and glue 2-cells via the attachings maps ab^{-2} , bc^{-3} , cd^{-4} , de^{-5} , ...