Geometry and Topology – Exam 3

Notes:

- 1. Write your name and student number **clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are allowed to consult text books and class notes.
- 5. You are **not** allowed to consult colleagues, calculators, computers etc.
- 6. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

Questions

Exercise 1 (1.5 pt). In each list of spaces below, decide which spaces are homotopy equivalent to each other (remember to justify your answer)

a)
$$\mathbb{K}\#T^2, \qquad \mathbb{R}P^2\#T^2\#S^2, \qquad \mathbb{K}\#\mathbb{R}P^2\#\mathbb{R}P^2, \qquad \mathbb{R}P^2\#\mathbb{R}P^2\#\mathbb{R}P^2.$$

where \mathbb{K} denotes the Klein bottle and T^2 is the 2-dimensional torus.

b)
$$S^{2n}, \qquad \mathbb{R}P^{2n}, \qquad \mathbb{C}P^n, \qquad \text{for } n > 1.$$

Exercise 2 (1.0 pt). A deformation retraction in the weak sense of a space X to a subspace $A \subset X$ is a homotopy $f_t: X \longrightarrow X$ such that $f_0 = \operatorname{Id}, f_1(X) \subset A$ and $f_t(A) \subset A$ for all $t \in [0, 1]$. Show that if X deformation retracts to A in this weak sense, then the inclusion $A \hookrightarrow X$ is a homotopy equivalence.

Exercise 3 (1.0 pt). Let X be the quotient space of S^2 obtained by identifying the north and south poles to a single point. Put a cell complex structure on X and use this to compute $\pi_1(X)$.

Exercise 4 (2.0 pt). Let X and Y be path connected and locally path connected and let \tilde{X} and \tilde{Y} be their simply-connected covering spaces, respectively. Show that if X is homotopy equivalent to \tilde{Y} then \tilde{X} is homotopy equivalent to \tilde{Y} .

Exercise 5 (1.0 pt). Show that if $A \subset X$ is a retract of X then the map $H_n(A) \longrightarrow H_n(X)$ induced by the inclusion $A \hookrightarrow X$ is injective for all n.

Exercise 6 (1.5 pt).

a) Given a map $f: S^{2n} \longrightarrow S^{2n}$, show that there is some point $x \in S^{2n}$ with either f(x) = x or f(x) = -x.

- b) Show that every map $f: \mathbb{R}P^{2n} \longrightarrow \mathbb{R}P^{2n}$ has a fixed point.
- c) Construct a map $f: \mathbb{R}P^{2n-1} \longrightarrow \mathbb{R}P^{2n-1}$ without fixed points. (Hint: use linear a transformation $\mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n}$ without eigenvectors.

Exercise 7 (2.0 pt). Show that $H_i(X \times S^n) = H_i(X) \oplus H_{i-n}(X)$ for all i and n, where $H_i = 0$ for i < 0 by definition. Hint: show $H_i(X \times S^n) = H_i(X) \oplus H_i(X \times S^n; X \times \{x_0\})$ and $H_i(X \times S^n; X \times \{x_0\}) = H_{i-1}(X \times S^{n-1}; X \times \{x_0\})$.