Midterm exam

Topologie en Meetkunde, Block 3, 2020

Instructions

- Write your name and student number in all the pages of the exam.
- You may write your solutions in either Dutch or English.
- You must justify the claims you make.
- You may use results from the lectures, but you must provide a clear statement (with complete hypothesis and conclusion).
- Try to write with clear handwriting. Structure your explanations clearly, using one paragraph for each new idea and one sentence for each particular claim.
- · Advice: Read all the exam in the beginning and address first the questions that you find easier.

Questions

 \mathcal{S} Exercise 1 (1,5 points). Let $C:=[-1,1]^2\subset\mathbb{R}^2$ be the square and let

$$\partial C := ([-1,1] \times \{-1,1\}) \cup (\{-1,1\} \times [-1,1])$$

be its boundary. Write a explicit deformation retraction of $C \setminus \{(0,0)\}$ to ∂C .

Exercise 2 (1,5 points). Let $B := \mathbb{S}^1 \cup (\{0\} \times [0,2]) \subset \mathbb{R}^2$. Show that B is homotopy equivalent to \mathbb{S}^1 but not homeomorphic to it.

Exercise 3 (1,5 points). Let X, Y and W be topological spaces. Let $f: X \to Y$ be a continuous map. Recall that [Y, W] denotes the set of equivalence classes of continuous maps $Y \to W$ up to homotopy. We define the **pullback** of f to be:

$$\begin{array}{ccc} f^*: [Y,W] & \longrightarrow & [X,W], \\ [g] & \longrightarrow & f^*([g]) := [g \circ f]. \end{array}$$

Show that:

- → f* is a well-defined function.
- § Given homotopic maps $f_0, f_1: X \to Y$, it follows that $f_0^* = f_1^*$.
- $\mathfrak{S} \bullet$ If f is a homotopy equivalence then f^* is a bijection.

Exercise 4 (1,5 points). Let $\mathbb{S}^2 \subset \mathbb{R}^3$ be the sphere. Let $\mathbb{S}^1 \subset \mathbb{R}^2 \subset \mathbb{R}^3$ be its equator. Show that there is no retraction $r: \mathbb{S}^2 \to \mathbb{S}^1$.

Sexercise 5 (1 points). Let $C := [-1,1]^2 \subset \mathbb{R}^2$ be the square. Show that the following paths are homotopic relative to their endpoints:

$$\gamma_0, \gamma_1 : [0, 1] \to C$$

$$\gamma_0(s) := (2s - 1, -1),$$

$$\gamma_1 := (s \to (1, 1 - 2s)) \bullet (s \to (2s - 1, 1)) \bullet (s \to (-1, 2s - 1)).$$

Construct a explicit homotopy. Suggestion: draw the paths involved.

Exercise 6 (1,5 points). Let A and B be two copies of \mathbb{R} . Let k be a positive integer. The line with k double points is

$$L_k := (A \coprod B) / ((A \setminus \{1, \dots, k\}) \ni x \cong x \in (B \setminus \{1, \dots, k\})).$$

The fundamental group of L_1 is $\pi_1(L,p) \cong \mathbb{Z}$ for all $p \in L_1$. Using this information (which you do not have to prove), show that the fundamental group of L_k is isomorphic to $*_k\mathbb{Z}$ (i.e. the group with k generators and no relations).

S Exercise 7 (1,5 points). Let $A := \mathbb{S}^2 \cup (\{0\} \times \{0\} \times [-1,1]) \subset \mathbb{R}^3$. Compute the fundamental group of A.