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1. Given a map f : M → N , prove that F : M → M × N , F (p) = (p, f(p))
is an embedding. According to Prop. 4.7 of Ch. 1 it suffices to prove that F is an
immersion and a homeomorphism onto its image. Denote the image of f by Γ. The
map p ∈ M 7→ (f, f(p)) ∈ Γ is continuous and bijective. Its inverse is the restriction
to Γ of the projection πM : M × N → M , and hence also continuous. So F maps M
homeomorphically onto Γ. Since πMF is the identity, so isDp(πMF ) = DF (p)πM ◦DpF
and hence DpF is injective. So F is an immersion as well.

2. Let M be a compact nonempty oriented m-manifold. Construct an m-form on M
which is not exact. Choose an oriented chart (U, κ) for M with the property that κ(U)
is the unit ball of Rm. Let f : Rm → [0, 1] be a smooth function that is not identically
zero, but is zero outside the closed ball B centered at 0 of radius 1

2 . Then the integral∫
Rm f(x1, . . . , xm)dx1 . . . dxm converges and is a positive real number. Now let ω be the
m-form on M characterized by the property that on U it is equal to κ∗(fdx1 ∧ · · · ∧ dxm)
and is zero onM−U . (A formal proof that this ω is smooth goes as follows: B is compact,
κ is a homeomorphism of U onto κ(U) and so κ−1B is also compact. But M is Hausdorff
and so this implies that M − κ−1B is open in M . Hence M is covered by its two open
subsets U and M − κ−1B. Since ω is smooth on either subset (it is identically zero on
M−κ−1B), ω is smooth.) Now by definition

∫
M
ω =

∫
Rm f(x1, . . . , xm)dx1 · · · dm > 0.

Stokes’ theorem then precludes this form to be exact, for if it were and ω = dη, then that
theorem says that

∫
M
ω =

∫
∂M

η and this is zero since ∂M = ∅.

3. Let V be a vector field on a manifold M . We say that a differential form α on M is
V -invariant if it is killed by the Lie derivative LV : LV (α) = 0.
3a. Prove that the exterior product of two V -invariant forms is V -invariant. If α and
β are differential forms on M , then we have a Leibniz rule asserting that LV (α ∧ β) =
LV (α) ∧ β + α ∧ LV (β). So if LV (α) = 0 and LV (β) = 0, LV (α ∧ β) = 0.
3b. Suppose that V generates a flow (Ht : M → M)t∈R. Prove that a differential form α
on M is V -invariant if and only if H∗t α = α for all t ∈ R. Assigning to t ∈ R the form
H∗t α defines a function F from R to the vector space of differential forms. Now, H∗t α is
constant in t if and only if the derivative of F with respect to t is constant equal to zero.
The derivative in t = 0 is LV α. Since LV commutes with H∗t , its derivative in t = t0 is
LVH∗t0α = H∗t0(LV α). The latter is zero if and only if LV α = 0.
3c. Describe the differential forms on Rm that are invariant under all the coordinate
vector fields ∂

∂xi , i = 1, . . . ,m. The vector field ∂
∂xi generates the flow that assigns to t

the translation in t times the basis vector ei ∈ Rm. So invariance under all the coordinate
vector fields amounts to translation invariance. This means: constant coefficients: such a
k-form is a R-linear combination of the forms dxi1 ∧ · · · ∧ dxik , where 1 ≤ i1 < · · · <
ik ≤ m.
3d. Consider a product manifold S1×N (so N a manifold). A point of S1×N is denoted
(eiτ , x) with τ ∈ R/(2πZ) and x ∈ M . So d

dτ defines a vector field on this manifold.
Determine the p-forms α on S1 × N that are invariant under this vector field. (Do this
in terms of the decomposition α = α′ + dτ ∧ α′′, with α′ and α′′ forms of degree p resp.
p − 1 that depend on τ .) We show that α is nvariant under d

dτ if and only if α′ and α′′

are independent of τ . This can be proved as in (3c) (so by means of an argument based on
(3b)) or we can proceed as follows. Let us write dN for the N -component of the exterior
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derivative. Then

dα = dMα
′ + dτ ∧

(∂α′
∂τ
− dNα′′

)
and so ιd/dτdα = ∂α′

∂τ + dNα
′′. We also see that

dιd/dτα = dα′′ = dNα
′′ + dτ ∧ ∂α

′′

∂τ
.

It follows that the sum Ld/dτα = ιd/dτdα+ dιd/dτα equals ∂
∂τ α

′ + dτ ∧
(
∂
∂τ α

′). This is
identically zero if and only if each term is, meaning that both α′ and α′′ are independent
of τ .

4. We regard a 2-form on a manifold M as an antisymmetric function on pairs of vector
fields. Let α be a 1-form on M .
4a. Prove if α is exact, then V (α(W )) −W (α(V )) − α([V,W ]) = 0. To say that α is
exact means: α = df for some f : M → R. Then α(V ) = dα(V ) = V (f) and similarly
for W . So V (α(W ))−W (α(V )) = VW (f)−WV (f) = [V,W ](f) = α([V,W ]).
4c. Prove that if α is exact and f is a function on M , then V (fα(W )) −W (fα(V )) −
fα([V,W ]) = df(V )α(W ) − df(W )α(V ). According to the Leibniz rule, we have
V (fα(W )) = V (f)α(W ) + fV (α(W )) = df(V )α(W ) + fα(W ) and likewise for
W (fα(V )). So

V (fα(W ))−W (fα(V )) = df(V )α(W ) + fV (α(W ))− df(W )α(V )− fWα(V ) =

df(V )α(W )− df(W )α(V ) + fα([V,W ]) = (df ∧ α)(V,W ) + fα([V,W ])

4d. Prove that for general α, V (α(W )) − W (α(V )) − α([V,W ]) = dα(V,W ). It is
enough to verify this on a coordinate chart (U, κ). On that chart every 1-form is written
as f1dκ1 + · · · + fmdκ

m for certain functions f1, . . . , fm on U . According to (4c) the
assertion holds for every term fidκ

i. So it holds for α.

5. We give S2 its standard orientation. Denote by π : S2 → P 2 is the usual projection
to the projective plane which identifies antipodal pairs. Prove that for every 2-form α on
P 2, we have

∫
S2 π

∗α = 0. We give two proofs, one lengthy, one short.
Long proof: Cover P 2 by finitely many charts (Ui, κi) with κ(Ui) the unit ball and

such that π−1Ui consists of two copies of Ui that are opposite with respect to the antipodal
map. On only one of these copies the composite map κiπ is orientation preserving; denote
that copy Ũi. Then κiπ is on −Ũi orientation reversing and {Ũi}i ∪ {−Ũi}i covers S2.
We lift this covering to an oriented atlas by taking on Ũi the chart κiπ and on −Ũi the
chart σκiπ, where σ(x1, x2) = (−x1, x2). We now prove that

∫
S2 π

∗α = 0 in case the
support of α is contained in some Ui (this suffices for the general case then follows with
the help of a partition of unity). For such α, let f : κ(Ui) → R be such that α|Ui =
κ∗i (fdx

1 ∧ dx2). Our definition prescribes that
∫
Ũi
π∗α =

∫
κ(Ui)

f(x1, x2)dx1dx2 and
that

∫
−Ũi

π∗α =
∫
σκ(Ui)

σfdx1dx2 =
∫
κ(Ui)

f(−x1, x2)dx1dx2. The last integral is (by
the transformation formula) equal to −

∫
κ(Ui)

f(x1, x2)dx1dx2. Hence
∫
S2 π

∗α = 0.
Short proof: Let ι : S2 → S2, ι(x) = −x, be the antipodal involution. Since ι reverses

orientation we have that for any 2-form β on S2:
∫
S2 ι
∗β = −

∫
S2 β. Now take β := π∗α.

Then ι∗β = ι∗π∗α = (π ◦ ι)∗α = π∗α = β and hence
∫
S2 β = 0.


