- 1. Given a map $f: M \to N$, prove that $F: M \to M \times N$, F(p) = (p, f(p)) is an embedding. According to Prop. 4.7 of Ch. 1 it suffices to prove that F is an immersion and a homeomorphism onto its image. Denote the image of f by Γ . The map $p \in M \mapsto (f, f(p)) \in \Gamma$ is continuous and bijective. Its inverse is the restriction to Γ of the projection $\pi_M: M \times N \to M$, and hence also continuous. So F maps M homeomorphically onto Γ . Since $\pi_M F$ is the identity, so is $D_p(\pi_M F) = D_{F(p)}\pi_M \circ D_p F$ and hence $D_p F$ is injective. So F is an immersion as well.
- 2. Let M be a compact nonempty oriented m-manifold. Construct an m-form on M which is not exact. Choose an oriented chart (U,κ) for M with the property that $\kappa(U)$ is the unit ball of \mathbb{R}^m . Let $f:\mathbb{R}^m \to [0,1]$ be a smooth function that is not identically zero, but is zero outside the closed ball B centered at 0 of radius $\frac{1}{2}$. Then the integral $\int_{\mathbb{R}^m} f(x^1,\ldots,x^m)dx^1\ldots dx^m$ converges and is a positive real number. Now let ω be the m-form on M characterized by the property that on U it is equal to $\kappa^*(fdx^1\wedge\cdots\wedge dx^m)$ and is zero on M-U. (A formal proof that this ω is smooth goes as follows: B is compact, κ is a homeomorphism of U onto $\kappa(U)$ and so $\kappa^{-1}B$ is also compact. But M is Hausdorff and so this implies that $M-\kappa^{-1}B$ is open in M. Hence M is covered by its two open subsets U and $M-\kappa^{-1}B$. Since ω is smooth on either subset (it is identically zero on $M-\kappa^{-1}B$), ω is smooth.) Now by definition $\int_M \omega = \int_{\mathbb{R}^m} f(x^1,\ldots,x^m)dx^1\cdots d^m>0$. Stokes' theorem then precludes this form to be exact, for if it were and $\omega=d\eta$, then that theorem says that $\int_M \omega = \int_{\partial M} \eta$ and this is zero since $\partial M=\emptyset$.
- 3. Let V be a vector field on a manifold M. We say that a differential form α on M is V-invariant if it is killed by the Lie derivative \mathcal{L}_V : $\mathcal{L}_V(\alpha) = 0$.
- 3a. Prove that the exterior product of two V-invariant forms is V-invariant. If α and β are differential forms on M, then we have a Leibniz rule asserting that $\mathcal{L}_V(\alpha \wedge \beta) = \mathcal{L}_V(\alpha) \wedge \beta + \alpha \wedge \mathcal{L}_V(\beta)$. So if $\mathcal{L}_V(\alpha) = 0$ and $\mathcal{L}_V(\beta) = 0$, $\mathcal{L}_V(\alpha \wedge \beta) = 0$.
- 3b. Suppose that V generates a flow $(H_t: M \to M)_{t \in \mathbb{R}}$. Prove that a differential form α on M is V-invariant if and only if $H_t^*\alpha = \alpha$ for all $t \in \mathbb{R}$. Assigning to $t \in \mathbb{R}$ the form $H_t^*\alpha$ defines a function F from \mathbb{R} to the vector space of differential forms. Now, $H_t^*\alpha$ is constant in t if and only if the derivative of F with respect to t is constant equal to zero. The derivative in t = 0 is $\mathcal{L}_V \alpha$. Since \mathcal{L}_V commutes with H_t^* , its derivative in $t = t_0$ is $\mathcal{L}_V H_{t_0}^*\alpha = H_{t_0}^*(\mathcal{L}_V\alpha)$. The latter is zero if and only if $\mathcal{L}_V\alpha = 0$.
- 3c. Describe the differential forms on \mathbb{R}^m that are invariant under all the coordinate vector fields $\frac{\partial}{\partial x^i}$, $i=1,\ldots,m$. The vector field $\frac{\partial}{\partial x^i}$ generates the flow that assigns to t the translation in t times the basis vector $e_i \in \mathbb{R}^m$. So invariance under all the coordinate vector fields amounts to translation invariance. This means: constant coefficients: such a k-form is a \mathbb{R} -linear combination of the forms $dx^{i_1} \wedge \cdots \wedge dx^{i_k}$, where $1 \leq i_1 < \cdots < i_k < m$.
- 3d. Consider a product manifold $S^1 \times N$ (so N a manifold). A point of $S^1 \times N$ is denoted $(e^{i\tau}, x)$ with $\tau \in \mathbb{R}/(2\pi\mathbb{Z})$ and $x \in M$. So $\frac{d}{d\tau}$ defines a vector field on this manifold. Determine the p-forms α on $S^1 \times N$ that are invariant under this vector field. (Do this in terms of the decomposition $\alpha = \alpha' + d\tau \wedge \alpha''$, with α' and α'' forms of degree p resp. p-1 that depend on τ .) We show that α is nvariant under $\frac{d}{d\tau}$ if and only if α' and α'' are independent of τ . This can be proved as in (3c) (so by means of an argument based on (3b)) or we can proceed as follows. Let us write d_N for the N-component of the exterior

1

derivative. Then

$$d\alpha = d_M \alpha' + d\tau \wedge \left(\frac{\partial \alpha'}{\partial \tau} - d_N \alpha''\right)$$

and so $\iota_{d/d\tau}d\alpha = \frac{\partial \alpha'}{\partial \tau} + d_N \alpha''$. We also see that

$$d\iota_{d/d\tau}\alpha = d\alpha'' = d_N\alpha'' + d\tau \wedge \frac{\partial\alpha''}{\partial\tau}.$$

It follows that the sum $\mathcal{L}_{d/d\tau}\alpha = \iota_{d/d\tau}d\alpha + d\iota_{d/d\tau}\alpha$ equals $\frac{\partial}{\partial \tau}\alpha' + d\tau \wedge \left(\frac{\partial}{\partial \tau}\alpha'\right)$. This is identically zero if and only if each term is, meaning that both α' and α'' are independent of τ .

- 4. We regard a 2-form on a manifold M as an antisymmetric function on pairs of vector fields. Let α be a 1-form on M.
- 4a. Prove if α is exact, then $V(\alpha(W)) W(\alpha(V)) \alpha([V, W]) = 0$. To say that α is exact means: $\alpha = df$ for some $f: M \to \mathbb{R}$. Then $\alpha(V) = d\alpha(V) = V(f)$ and similarly for W. So $V(\alpha(W)) W(\alpha(V)) = VW(f) WV(f) = [V, W](f) = \alpha([V, W])$.
- 4c. Prove that if α is exact and f is a function on M, then $V(f\alpha(W)) W(f\alpha(V)) f\alpha([V,W]) = df(V)\alpha(W) df(W)\alpha(V)$. According to the Leibniz rule, we have $V(f\alpha(W)) = V(f)\alpha(W) + fV(\alpha(W)) = df(V)\alpha(W) + f\alpha(W)$ and likewise for $W(f\alpha(V))$. So

$$V(f\alpha(W)) - W(f\alpha(V)) = df(V)\alpha(W) + fV(\alpha(W)) - df(W)\alpha(V) - fW\alpha(V) = df(V)\alpha(W) - df(W)\alpha(V) + f\alpha([V, W]) = (df \wedge \alpha)(V, W) + f\alpha([V, W])$$

- 4d. Prove that for general α , $V(\alpha(W)) W(\alpha(V)) \alpha([V, W]) = d\alpha(V, W)$. It is enough to verify this on a coordinate chart (U, κ) . On that chart every 1-form is written as $f_1 d\kappa^1 + \cdots + f_m d\kappa^m$ for certain functions f_1, \ldots, f_m on U. According to (4c) the assertion holds for every term $f_i d\kappa^i$. So it holds for α .
- 5. We give S^2 its standard orientation. Denote by $\pi: S^2 \to P^2$ is the usual projection to the projective plane which identifies antipodal pairs. Prove that for every 2-form α on P^2 , we have $\int_{S^2} \pi^* \alpha = 0$. We give two proofs, one lengthy, one short.

Long proof: Cover P^2 by finitely many charts (U_i,κ_i) with $\kappa(U_i)$ the unit ball and such that $\pi^{-1}U_i$ consists of two copies of U_i that are opposite with respect to the antipodal map. On only one of these copies the composite map $\kappa_i\pi$ is orientation preserving; denote that copy \tilde{U}_i . Then $\kappa_i\pi$ is on $-\tilde{U}_i$ orientation reversing and $\{\tilde{U}_i\}_i \cup \{-\tilde{U}_i\}_i$ covers S^2 . We lift this covering to an oriented atlas by taking on \tilde{U}_i the chart $\kappa_i\pi$ and on $-\tilde{U}_i$ the chart $\sigma\kappa_i\pi$, where $\sigma(x^1,x^2)=(-x^1,x^2)$. We now prove that $\int_{S^2}\pi^*\alpha=0$ in case the support of α is contained in some U_i (this suffices for the general case then follows with the help of a partition of unity). For such α , let $f:\kappa(U_i)\to\mathbb{R}$ be such that $\alpha|U_i=\kappa_i^*(fdx^1\wedge dx^2)$. Our definition prescribes that $\int_{\tilde{U}_i}\pi^*\alpha=\int_{\kappa(U_i)}f(x^1,x^2)dx^1dx^2$ and that $\int_{-\tilde{U}_i}\pi^*\alpha=\int_{\sigma\kappa(U_i)}\sigma fdx^1dx^2=\int_{\kappa(U_i)}f(-x^1,x^2)dx^1dx^2$. The last integral is (by the transformation formula) equal to $-\int_{\kappa(U_i)}f(x^1,x^2)dx^1dx^2$. Hence $\int_{S^2}\pi^*\alpha=0$.

Short proof: Let $\iota:S^2\to S^2$, $\iota(x)=-x$, be the antipodal involution. Since ι reverses orientation we have that for any 2-form β on S^2 : $\int_{S^2}\iota^*\beta=-\int_{S^2}\beta$. Now take $\beta:=\pi^*\alpha$. Then $\iota^*\beta=\iota^*\pi^*\alpha=(\pi\circ\iota)^*\alpha=\pi^*\alpha=\beta$ and hence $\int_{S^2}\beta=0$.