Differentiable manifolds - Exam 1

Notes:

- 1. Write your name and student number **clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are allowed to consult text books and class notes.
- 5. You are not allowed to consult colleagues, calculators, computers etc.
- Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

Questions

Exercise 1 (2.0 pt). Let M be a nonempty smooth compact manifold. Show that

- 1. there is no submersion $f: M \longrightarrow \mathbb{R}$.
- 2. there is no submersion $f: M \longrightarrow \mathbb{R}^k$ for any k > 0.

Exercise 2. (2.0 pt) Let M be a manifold and let $f, g: M \longrightarrow \mathbb{R}$ be smooth real functions. Let g be a regular value of g and let $P = g^{-1}(g)$. Show that a point $x \in P$ is a critical point for the restriction

$$f|_P:P\longrightarrow \mathbb{R}$$

if and only if there is a real number λ such that $df|_x = \lambda dg|_x$.

Exercise 3. (2.0 pt) Let $\varphi: N \longrightarrow M$ be a submanifold and let $\gamma: (0,1) \longrightarrow M$ be a smooth path which lies in the image of φ , i.e., $\gamma((0,1)) \subset \varphi(N)$.

- 1. Show that if φ is an embedding, then $\frac{d\gamma}{dt}|_{t} \in \varphi_{*}(T_{\varphi^{-1}(\gamma(t))}N)$;
- 2. Give an example of a submanifold which is not an embedding for which the conclusion above fails.

Exercise 4 (2.0 pt). Let $\langle \cdot, \cdot \rangle$ be a Riemannian metric on TM, i.e.,

• for every $p \in M$

$$\langle \cdot, \cdot \rangle : T_p M \times T_p M \longrightarrow \mathbb{R}$$

is linear on both entries.

• for every $p \in M$ and every $X \in T_p M \setminus \{0\}$,

$$\langle X, X \rangle > 0$$

- For any $X,Y\in\mathcal{X}(M)$ smooth vector fields, $\langle X,Y\rangle$ is a smooth real function.
- 1. Given $f: M \longrightarrow \mathbb{R}$, show that there is a smooth vector field $\nabla f: M \longrightarrow TM$ such that for all $X \in \mathcal{X}(M)$, $(\nabla f, X) = df(X)$.
- 2. Show that if $y \in \mathbb{R}$ is a regular value of f then ∇f is orthogonal to the tangent space of the submanifold $f^{-1}(y)$, i.e., if f(p) = y and X is tangent to $f^{-1}(y)$ at p, then $(\nabla f, X) = 0$.
- 3. Let $p \in M$ be a point such that $\nabla f|_p \neq 0$ and let

$$X = \left. \nabla f / \langle \nabla f, \nabla f \rangle^{1/2} \right|_p \in T_p M.$$

Show that for any $Y \in T_pM$ with $\langle Y, Y \rangle = 1$

$$\mathcal{L}_Y f|_p \leq \mathcal{L}_X f|_p$$

Exercise 5 (2.0 pt). Prove or give a counterexample to the following claim: "If $E \longrightarrow M$ is a nontrivial bundle, then $E \oplus E \longrightarrow M$ is also nontrivial."