
SOLUTIONS OF THE DIFFERENTIAL MANIFOLDS EXAM, MARCH 19 2007

(1) Let λ ∈ C have positive real part. Prove that the map f : R → C defined
by f(t) = eλt is an injective immersion whose image is not closed in C. Is f an
embedding?
We have |f(t| = eRe(λ)t. So |f | defines a diffeomorphism of R onto (0,∞)
with inverse Re(λ) log(t). This implies that f and its derivative are injective:
f is an injective immersion. It is also a homeomorphism onto its image, for
its inverse is the restriction of z ∈ C − {0} 7→ Re(λ) log |z| to f(R). This
implies that f is an embedding.

(2) Show that real projective n-space Pn is orientable for n odd. Explain
why Pn cannot be oriented when n is even.
We orient Sn as boundary of the unit ball: if we identify TpS

n with the or-
thogonal complement of p in Rn+1, then we stipulate that a basis v1, . . . , vn

of the latter is oriented if and only if the basis (p, v1, . . . , vn) of Rn+1 has
positive determinant. The antipodal map, ι : Sn → Sn, is the restriction
of −1n+1 : Rn+1 → Rn+1 and the latter has determinant (−1)n+1. So the
derivative of ι at p sends (p, v1, . . . , vn) to (−p,−v1, . . . ,−vn). Hence Dpι is
orientation preserving if and only if n is odd.

We now think of Pn as obtained from the unit sphere Sn ⊂ Rn+1 by
identifying antipodal pairs. The corresponding map f : Sn → Pn is a local
diffeomorphism, in particular the derivative of f at any p ∈ Sn is an iso-
morphism and we have Dpf = Dp(fι) = D−pfDpι : TpS

n → Tf(p)P
n. We

saw that for odd n, Dpι is orientation preserving and so we may fix an ori-
entation of Tf(p)P

n by requiring that Df (or D−pf—this does not matter) is
orientation preserving. This defines an orientation on Pn.

Let now n be even and positive. Suppose we have succeeded in orienting
Pn. Since Dpι is orientation reversing only one of Dpf and D−pf is
orientation preserving. This singles out an element of the antipodal pair
{p,−p}. We thus obtain a continuous section g : Pn → Sn of f . Since
Pn is compact, so is its image g(Pn). In particular, g(Pn) is closed. Its
complement is −g(Pn) and hence also closed. So {g(Pn),−g(Pn)} is a
nontrivial splitting of Sn. This contradicts the fact that Sn is connected.

(3) Let M be a manifold, f : M → R2 a C∞-map and put N := f−1(0, 0).
Let V and W be vector fields on M that lift ∂/∂x resp. ∂/∂y (so Dpf(Vp) =
∂/∂x and Dpf(Wp) = ∂/∂y for every p ∈ M).
(3a) Prove that N is a submanifold of M and that [V,W ] is tangent to it (i.e.,
restricts to a vector field on N).
The assumption implies that for every p ∈ M , Dpf is a surjection. So f is a
submersion and by our form of the implicit function theorem it then follows
that N = f−1(0, 0) is a submanifold.

We give two proofs for the second part.
First proof: Choose at a point of N a coordinate chart κ : U → Rm such that
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that κ1 = f1 and κ2 = f2. So N is then given by κ1 = κ2 = 0. In terms of
this chart V resp. W looks like

∂/∂x1 +
∑
i≥3

V i(x)∂/∂xi resp. ∂/∂x2 +
∑
i≥3

W i(x)∂/∂xi.

An easy check shows that the Lie bracket of these two vector fields involves
only terms of the form ∂/∂x3, . . . , ∂/∂xm and so [V,W ] is tangent to N .
Second proof: Since V is a lift of ∂/∂x1 we have V (f1) = 1 and V (f2) = 0.
Likewise W (f1) = 0,W (f2) = 1. So [V,W ](f1) = V W (f1) − WV (f1) =
−W (1) = 0 and similarly [V,W ](f2) = 0. This means that [V,W ] is tangent
to the fibers of f .
(3b) Suppose that V and W generate flows on M (that we shall denote by
H resp. I). Prove that the map R2 × N → M , (a, b, p) 7→ IbHa(p) is a
diffeomorphism. (Hint: find a formula for its inverse.)
We claim that fHt(p)−(t, 0) is constant equal to f(p). For if we differentiate
the lefthand side with respect to t, then we get DfHt(p)(VHt(p))−∂/∂x1 = 0.
For a similar reason, fIt(p)−(0, t) is constant equal to f(p). So if p ∈ M , and
r(p) := H−f1(p)I−f2(p)p then fr(p) = f(p) − (f1(p), 0) − (0, f2(p)) = (0, 0).
In other words, r(p) ∈ N . This defines a differentiable map r : M → N .
Then (f1, f2, r) : M → R2 × N) is the inverse of the map R2 × N → M ,
(a, b, p) 7→ IbHa(p) and so the latter is a diffeomorphism.
(3c) Prove that if V and W generate flows on M , then the inclu-
sion i : N ⊂ M induces an isomorphism on De Rham cohomology:
Hk(i) : Hk

DR(M) → Hk
DR(N) is an isomorphism for all k.

Under the above diffeomorphism, the inclusion i simply becomes the
inclusion of N in R2 ×N (as {(0, 0} ×N). We know that for any manifold
N , the inclusion of N in R × N (as {(0} × N) induces an isomorphism on
De Rham cohomology. Applying this twice (first to N , then to {(0} × N)
yields the result.

(4) Let M be a compact manifold and denote by π : S1 × M → M the
projection. A k-form α on S1 ×M can always be written

α(θ, p) = α′(θ, p) + dθ ∧ α′′(θ, p),

where α′ and α′′ are forms (of degree k resp. k − 1) on M that depend on
θ ∈ S1 and θ is the angular coordinate on S1. Let I(α) be the (k − 1)-form
on M defined by I(α)(p) :=

∫ 2π
0 α′′(θ, p)dθ.

(4a) Prove that I commutes with the exterior derivative: dI = −Id1.
We regard α′ as a family of k-forms on M depending on the angular param-
eter θ. If dMα′ denotes the corresponding exterior derivative, then it is clear
that

dα′ = dMα′ + dθ ∧ ∂α′

∂θ
and d(dθ ∧ α′′) = −dθ ∧ dMα′′.

1The formula to prove was erroneously stated as: dI = Id



It follows that (dα)′′ = ∂α′/∂θ − dMα′′. If we then integrate over θ we find
that

(Idα)(p) =
∫ 2π

0

∂α′

∂θ
(θ, p)dθ −

∫ 2π

0
(dMα′′)(θ, p)dθ =

= α′(p, 2π)− α′(p, 0)−
∫ 2π

0
(dMα′′)(θ, p)dθ =

= −d
( ∫ 2π

0
α′′(θ, p)dθ

)
= −dI(α).

(4b) Prove that I induces a linear map

I : Hk
DR(S1 ×M) → Hk−1

DR (M)

and show that this map is surjective.
It is clear that I is R-linear. If α is closed, then so is I(α), for dI(α) =
−Id(α) = 0. If α is exact, say α = dα̃, then I(α) = Id(α̃) = −dI(α̃)
and hence I(α) is exact. So I induces a linear map as asserted. If β is a
closed (k − 1)-form on M , then dθ ∧ β is a closed k-form on S1 × M (for
d(dθ ∧ β) = −dθ ∧ dβ = 0) and we have I(β) = 2πβ. So I maps (the class
of) (2π)−1dθ ∧ β to (the class of) β.
(4c) Prove that Hk(π) : Hk

DR(M) → Hk
DR(S1 ×M) is injective and that its

composition with I is zero.
Let i : M → S1×M be the inclusion given by p 7→ (0, p). Then πi : M → M
is the identity map and hence so is Hk

DR(πi) = Hk
DR(i)Hk

DR(π). This implies
that Hk

DR(π) is injective. If β is a k-form on M , then π∗Mβ is the same k-form,
but now thought of as a form on S1 ×M . In particular, (π∗Mβ)′′ = 0 and so
Iπ∗Mβ = 0. It follows that π∗M maps to the kernel of I : Hk

DR(S1 × M) →
Hk−1

DR (M).
(4d) Prove that the image of Hk(π) is the kernel of I. Conclude that Hk

DR(S1×
M) ∼= Hk

DR(M)⊕Hk−1
DR (M).

An element a of the kernel of I : Hk
DR(S1×M) → Hk−1

DR (M) is by definition
represented by a closed k-form α on S1 ×M with the property that I(α) is
exact: I(α) = dβ for some (k − 2)-form β on M . We must show that it can
be represented by the image of a closed k-form on M under π∗M .

Consider the (k−1)-form dθ∧β on S1×M . Then d(dθ∧β) = −dθ∧dβ =
−dθ ∧ I(α). So upon replacing α by α + d(dθ ∧ β), we can always represent
a by an α with I(α) = 0, that is, with

∫ 2π
0 α′′(t, p)dt = 0 for all p. Then

γ(p, θ) :=
∫ θ

0
α′′(t, p)dt.

is periodic in θ with period 2π and hence defines a (k − 1) form on S1 ×M .
We have (dγ)′′ = −dθ ∧ α′′ and so if we replace α by α + dγ, we can even
arrange that α′′ = 0. We then have α = α′ and 0 = (dα)′′ = ∂α′

∂θ . This
implies that α′ is constant in θ and hence defines a k-form on M (that we



still denote α′). Then a is represented by π∗M (α′) and hence is in the image
of Hk

DR(πM ).
It follows from the preceding that

(Hk
DR(i), I) : Hk

DR(S1 ×M) → Hk
DR(M)⊕Hk−1

DR (M)

is an isomorphism of vector spaces.


