
Solutions of the mid-term exam problems
November 11, 2004

1. (a)
(

X1

Z1

)
=

(
1 0
3 1

)(
X1

Y1

)
so that

(
X1

Z1

)
∼ N

((
1
5

)
,

(
1 2
2 6

))
and Cov(X1, Z1) = 2 which

implies that X1, Z1 are not independent. In the same way:
(

Y1

Z1

)
∼ N

((
2
5

)
,

(
3 0
0 6

))
,

thus Cov(Y1, Z1) = 0 which implies that Y1, Z1 are independent.(
Z1

V1

)
=

(
3 1
2 −3

)(
X1

Y1

)
, thus

(
Z1

V1

)
∼ N

((
5
−4

)
,

(
6 4
4 43

))
.

The vector (X1, Z1, V1)T is normal since it is a linear transformation of a normal vector but it
does not have a density because its coordinates are linearly dependent: V1 = −3Z1 +11X1.
The covarince matrix of this vector must be singular (one can also show this by direct
calculations) and therefore the density does not exist.
By the Fisher theorem, the joint distribution of (V̄7, 6S2

v/Var(V1))T is the product of
N(−4, 43

7 ) and χ2
6 (since the coordinates are independent).

(b) From (a), we know that Z1 ∼ N(5, 6), V1 ∼ N(−4, 43). Therefore, by the theorem of
Fisher (recall also that if Y ∼ χ2

k, then EY = k and Var(Y ) = 2k), it is easy to compute
1
5EZ̄7 = 1, 7

3Var(Z̄7) = 2, 1
2ES2

z = 3, Var
( S2

z√
3

)
= 4, 5

43ES2
v = 5, Var(

√
18

43 S2
v) = 6.

(c) Recall X1 ∼ N(1, 1), Y1 ∼ N(2, 3). Calculate further 21
101Var(7Z̄7−3X̄9) = 21

101

(49Var(Z1)
7 +

9Var(X1)
9 − 21·2·7Cov(Z1,X1)

7·9
)

= 7, 1 + 1
3Var(2S2

y − S2
z ) = 1 + 1

3

(
4Var(S2

y) + Var(S2
z )

)
=

8 because Y1, Z1 are independent, 1.8Cov(X1, V1) = 9
5

(
2Var(X1) − 3Cov(X1, Y1)

)
= 9,

10 + Cov(X1, V5) = 10 because X1, V5 are independent and 55P
(
Z̄7 > Sz

0.906√
7

+ 5
)

=

55P
(√7(Z̄7−5)

Sz
> 0.906

)
= 55P

(
T > 0.906) = 55(1− 0.8) = 11.

2. (a) ET1 = nEX̄n+mEȲm
n+m = µ en ET2 = αnEX̄n+mEȲ

m+αn = µ. Both T1 and T2 are unbiased.

Therefore, MSE(T1) = Var(T1) = n2Var(X̄)+m2Var(Ȳ )
(n+m)2

= (n+αm)σ2

(n+m)2
, MSE(T2) = Var(T2) =

α2n2Var(X̄n)+m2Var(Ȳm)
(m+αn)2

= ασ2

m+αn . Comparing MSE(T1) with MSE(T2) boils down to com-
paring (n + αm)(m + αn) with α(n + m)2 or 1 + α2 with 2α. But 1 + α2 ≥ 2α (since
(1− α)2 ≥ 0), thus MSE(T1) ≥ MSE(T2), which means that T2 is more preferable.

(b) By the CLT Zn =
√

n(X̄n − µ) d→ Z ∼ N(0, σ2) as n → ∞ and Vn =
√

m(Ȳm − µ) d→
V ∼ N(0, ασ2) as m →∞. Since Zn, Vn are independent, (Zn, Vn)T d→ (Z, V )T as n →∞,
where Z, V are independent and have the above marginal normal distributions (this follows
immediately from the definition of the weak convergence). Now, apply the continuous

mapping theorem to conclude that
√

n(T1−µ) =
√

n(X̄n−µ)
1+mn/n +

√
mn(Ȳm−µ)

√
n/mn

1+n/mn
= Zn

1+mn/n +
Vm

√
n/mn

1+n/mn

d→ 1
3Z+

√
2

3 V ∼ N
(
0, (1+2α)σ2

9

)
and similarly

√
n(T2−µ) = Znα

α+mn/n + Vm

√
n/mn

1+αn/mn

d→
α

α+2Z +
√

2
α+2V = W ∼ N

(
0, ασ2

α+2

)
as n →∞. Notice in passing that ασ2

α+2 ≤ (1+2α)σ2

9 for all

α ∈ R. Apply the delta-method:
√

n
(
sin(T2)− sin(µ)

) d→ cos(µ)W ∼ N
(
0, ασ2(cos(µ))2

α+2

)
as

n →∞.

(c) Denote θ = (µ, σ2). The loglikelihood function is lµ,σ2(X, Y ) = lθ(X, Y ) = log pθ(X, Y ) =

− (n+m) log(2π)+m log α
2 − (n+m) log σ2

2 − ∑n
i=1

(Xi−µ)2

2σ2 − ∑m
j=1

(Yj−µ)2

2ασ2 . Solve the likelihood

equations ∂lθ(X,Y )
∂θ = 0 and derive the MLE µ̂ = T2 and σ̂2 =

α
Pn

i=1(Xi−T2)2+
Pm

j=1(Yj−T2)2

α(n+m) .
The maximum of lθ(X, Y ) is achieved in this point: for any fixed σ2 the maximum over µ



is in µ̂ and the maximum of lµ̂,σ2(X,Y ) is in σ̂2.

If σ2 is known, the Fisher information about µ is Iµ = −Eθ

(
∂2lµ,σ2 (X,Y )

∂µ2

)
= αn+m

ασ2 . The

MLE T2 is unbiased and Var(T2) = ασ2

m+αn = 1
Iµ

, that is, the Cramér-Rao bound is sharp.

If µ is known, the Fisher information about σ2 is Iσ2 = −Eθ

(
∂2lµ,σ2 (X,Y )

∂(σ2)2

)
= n+m

2σ4 . The

MLE of σ2 is σ̃2 =
α
Pn

i=1(Xi−µ)2+
Pm

j=1(Yj−µ)2

α(n+m) which is unbiased Eσ̃2 = σ2 and Var(σ̃2) =
α2
Pn

i=1 Var(Xi−µ)2+
Pm

j=1 Var(Yj−µ)2

α2(n+m)2
= 2σ4

n+m = 1
Iσ2

, that is, the Cramér-Rao bound is sharp.

(d) Let T3 = aX̄ + bȲ be an unbiased estimator of µ. We must have ET3 = µ or aµ + bµ = µ,
or a + b = 1. Thus a = 1− b and MSE(T3) = Var(T3) = (a2 + αb2)σ2/n. We have to show
that MSE(T2) ≤ MSE(T3) or α

1+α ≤ (1 − b)2 + αb2 = 1 − 2b + (1 + α)b2, or equivalently
0 ≤ 1−2b(1+α)+(1+α)2b2 = (1−(1+α)b)2, which is always true. The proof is completed.

3. (a) The moment estimator is a solution of the equations X̄n = EX1 = E(Y + θ2) = θ1 + θ2,
1
n

∑n
i=1 X2

i = X2
n = EX2

1 = E(Y + θ2)2 = (θ1 + θ2)2 + θ2
1. This yields θ̃1 =

√
X2

n − X̄2
n

and θ̃2 = X̄n−
√

X2
n − X̄2

n. Notice that θ̃1 + θ̃2 = X̄n and Var(X1) = Var(Y ) = θ2
1. So, by

the CLT,
√

n
(
θ̃1+ θ̃2−(θ1+θ2)

)
=
√

n(X̄n−EX1) = Yn
d→ Y ∼ N(0, θ2

1) as n →∞. By the

delta-method, with φ(x) = x−1,
√

n
(
(θ̃1+ θ̃2)−1−(θ1+θ2)−1

)
=
√

n
(
φ(X̄n)−φ((θ1+θ2)

) d→
φ′(θ1 + θ2)Y ∼ N

(
0,

θ2
1

(θ1+θ2)4

)
as n →∞.

(b) Let X(1) = min(X1, . . . , Xn), θ = (θ1, θ2). Write down the likelihood function pθ(X) =

θ−1
1 exp

{nθ2−
Pn

i=1 Xi

θ1

}
I{θ2 ≤ X(1)}. For any fixed θ1 > 0, it is maximized at θ̂2 = X(1).

Therefore maxθ2∈R,θ1>0 pθ(X) = maxθ1>0 pθ̂2,θ1
(X). The maximum of pθ̂2,θ1

(X) is attained

at a solution of the equation
∂ log pθ̂2,θ1

(X)

∂θ1
= 0 or − n

θ1
− nθ̂2−

Pn
i=1 Xi

θ2
1

= 0, which is θ̂1 =

X̄n − X(1) (this gives the unique maximum). Thus, the MLE is (θ̂1, θ̂2). The MLE is
biased: Eθ̂2 = EX(1) = θ2 + EZn

n = θ2 + θ1
n 6= θ2 since Zn ∼ Exp(1/θ1) by (c). The MLE is

asymptotically unbiased: Eθ̂2 = θ2+ θ1
n → θ2 and Eθ̂1 = EX̄n−EX(1) = θ1+θ2−(θ2+ θ1

n ) →
θ1 as n →∞.

(c) Compute FX1(x) =
∫ x
θ2

fθ1,θ2(u)du = 1 − e
−x−θ2

θ1 for x ≥ θ2 and FX1(x) = 0 for x < θ2.
Denote Zn = n(θ̂2−θ2), then for x ≥ 0 FZn(x) = P (n(θ̂2−θ2) ≤ x) = P

(
(X(1) ≤ θ2 + x

n

)
=

1 − (
1 − FX1(θ2 + x

n)
)n = 1 − e

− x
θ1 and FZn(x) = 0 for x < 0, i.e. Zn ∼ Exp(1/θ1) for

all n ∈ N. Thus n(θ̂2 − θ2) = Zn
d→ Z ∼ Exp(1/θ1) as n → ∞. Using this, (a) and

Slutski’s theorem, we obtain that Vn =
√

n
(
θ̂1 − θ1) =

√
n
(
X̄n − (θ1 + θ2)− (X(1) − θ2)

)
=

√
n
(
X̄n − (θ1 + θ2)

)
+ 1√

n
n(X(1) − θ2) = Yn + op(1)Zn

d→ Y ∼ N(0, θ2
1) as n →∞. By the

continuous mapping theorem, sin(n(θ̂2 − θ2)) = sin(Zn) d→ sin(Z), with Z ∼ Exp(1/θ1),
and cos

(
n1/3(θ̂1 − θ1)

)
= cos

(
n−1/6√n(θ̂1 − θ1)

)
= cos(n−1/6Vn) d→ cos(0) = 1 as n →∞.

Therefore, by Slutski’s theorem sin(n(θ̂2−θ2))

cos(n1/3(θ̂1−θ1))

d→ sin(Z) as n →∞, where Z ∼ Exp(1/θ1).

(d) If θ2 is known, the Fisher information about θ1 is Iθ1 = Var
(

∂ log pθ2,θ1
(X)

∂θ1

)
= Var

(Pn
i=1 Xi

θ2
1

)
=

n
θ2
1
. The MLE for θ1 is then θ̌1 = X̄n − θ2 (this follows from (b)) which is unbiased for θ1

and Var(θ̌1) = Var(X1)
n = θ2

1
n = 1

Iθ1
, i.e. the Cramér-Rao bound is sharp.
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