1. (a)

Solutions of the mid-term exam problems
November 11, 2004

() = (2 9) (29 s ear () = () (2 2)) it Conct 20 = 2 i

implies that X, Z; are not independent. In the same way: (?) ~ N (<§) , (g g)),
1
thus Cov(Y1, Z1) = 0 which implies that Y7, Z; are independent.

(1) =G 5) G o ()~ (2. )

The vector (X1, Z1, Vl)T is normal since it is a linear transformation of a normal vector but it
does not have a density because its coordinates are linearly dependent: Vi = —377 +11X7.
The covarince matrix of this vector must be singular (one can also show this by direct
calculations) and therefore the density does not exist.

By the Fisher theorem, the joint distribution of (V7,6S52/Var(V4))T is the product of
N(—4,%) and x2 (since the coordinates are independent).

From (a), we know that Z; ~ N(5,6), Vi ~ N(—4,43). Therefore, by the theorem of
Fisher (recall also that if Y ~ x2, then EY = k and Var(Y) = 2k), it is easy to compute

LBZ: =1, IVar(Z7) =2, $BS? =3, Var(32) =4, ZES2 =5, Var(VES?) =6.
Recall X1 ~ N(1,1), Y1 ~ N(2,3). Calculate further 2-Var(7Z7 —3Xy) = %(%4_

Var(xy) _ 2027CVZLX)Y — 7 1 4 Lar(252 — §2) = 1+ L(4Var(S2) + Var(s2))
8 because Yi, Z; are independent, 1.8Cov(X,V)) = (2Var(X1) — 3Cov(X1,Y ) =
10 + Cov(X1,Vs) = 10 because Xi, Vs are mdependent and 55P(Z7 > S, 0906 )

55P(W(Z7 5 > 0.906) = 55P(T > 0.906) = 55(1 — 0.8) = 11.
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ET, = nEXntmEYm _ wen ETy = anEXptmBY _ u. Both T and T, are unbiased.

n-+m m-+tan
Therefore, MSE(T}) = Var(Tl) = mVAr e VarY) _ (ntome® \SE(Ty) = Var(Ty) =
2p2Var(X,)+m2Var(¥,,)

(o) = rifan- Comparing MSE(Tl) with MSE(T3) boils down to com-

paring (n + am)(m + an) with a(n +m)? or 1 + o? with 2a. But 1 + o > 2« (since
(1 —a)? > 0), thus MSE(T}) > MSE(T), which means that T3 is more preferable.

By the CLT Z, = /n(X,, — p) 7~ N(0,0%) as n — oo and V,, = v/m(Yy, — p) <
V ~ N(0,a0?) as m — oco. Since Z,, V;, are independent, (Z,, V;,)* LA (Z, V)T asn — oo,
where Z,V are independent and have the above marginal normal distributions (this follows
immediately from the definition of the weak convergence). Now, apply the continuous
\/ﬁ()’(n—u)Jr\/rTn(Ym—u)\/n/Tn —Zn
1+mp/n 1+n/my 1+mn/n

VimA/n/mn d 14+2a)0? .. a VimA/n/my  d
71—}-11/7/)7, lZ—FQV N(O M) and similarly \/n(To—p) = afﬂ’;n/njL 1+an//mn

amZ+ Q{QV W ~ N(O, 3122) as n — oo. Notice in passing that +22 < (H%)a for all

o € R. Apply the delta-method: /n(sin(72) — sin(u)) <, cos(u)W ~ N (0 ,MQ%W) as
n — oo.

Denote 6 = (u,0?). The loglikelihood function is I, ,2(X,Y) = l(X,Y) = logps(X,Y) =
—(nm)log@mmloge _ (ntmjlose® _ gvn  (Ximp)? g (G0 Solve the likelihood

2 i=1" 202 j=1 2a¢3

A n T2 Pr_n )2
819%’” = 0 and derive the MLE i = T and 02 = & = (X zz(zl:m)Fl(Yj ci)ng

The maximum of ly(X,Y) is achieved in this point: for any fixed o2 the maximum over p

mapping theorem to conclude that \/n(Ty —p) =

equations



is in /1 and the maximum of [; ,2(X,Y’) is in 2.

If o2 is known, the Fisher information about u is I, = —E@(a u ’EZ(QKY)) = QZ:zm . The
MLE T is unbiased and Var(T,) = m"f;n = i, that is, the Cramér-Rao bound is sharp.

If v is known, the Fiﬂler informagon about o2 is I 2 = —E9<82l*(‘9’z’52())§’y)> = ";‘T. The
MI:DE of 02 is o2 = 2 i=lXs a’zzlim);% 1 (50" which is unbiased Ec? = ¢2 and Var(c?) =
o ?Zlvar(X;;Z)L +m) i L, Var(y—p)? = fj;n = % that is, the Cramér-Rao bound is sharp.

Let T3 = aX + bY be an unbiased estimator of . We must have ET3 = u or ap -+ by = p,
ora+b=1. Thus a =1 — b and MSE(73) = Var(713) = (a? + ab?)o?/n. We have to show

that MSE(T») < MSE(T3) or 5 < (1 - b)2 + ab? = 1 —2b+ (1 + a)b?, or equivalently

0 <1-2b(14+a)+(14+a)?h? = (1—(1+a)b)?, which is always true. The proof is completed.

The moment estimator is a solution of the equations X, = EX; = E(Y +03) = 01 + 04,
LS X2 =X2,=EX?=E(Y +6:)%= (61 + 92)2 + 67. This yields §; = /X2, — X2
and 0y = X,, — \/X2 — X2. Notice that 01+ 605 = X,, and Var(X;) = Var(Y) = 2. So, by
the CLT, v/n (01 +02— (61 +62)) = \/H(Xn—EXl) =Y, LY ~ N(0,62) as n — 0o. By the
delta-method, with ¢() = 272, /(61 +02) "2 = (B14602) 1) = V1 (d(Xn) — d((61+62))
&1+ 02)Y ~ N(0, (i) as n — o,

Let X(1) = nEn(Xl, ooy, Xp), 0 = (61,02). Write down the likelihood function pg(X) =
07 exp{u}l{ﬁg < X(l)}. For any fixed 67 > 0, it is maximized at 6y = X)-

Therefore maxg, R ¢, >0 Po(X) = maxg, >0 pg, o, (X). The maximum of py , (X) is attained

at a solution of the equation %ﬁflm =0 or —9"—1 — %797%?:1)(" = 0, which is 0, =
X, — X(1) (this gives the unique maximum). Thus, the MLE is (61,65). The MLE is
biased: Efy = EX(y) = =@y + % £ 0, since Z, ~ Exp(1/61) by (c). The MLE is
asymptotically unbiased: Eéz = 02—1—% — @9 and Eél = EXH—EX(D =0 —1—02—(92—1—%1) —
01 as n — oo.

_x—0y

Compute Fx, (z) = [y, fo,.0,(w)du = 1 —e 1 for x > 0y and Fy,(z) = 0 for x < 6s.
Denote Z,, = n(92 —05), then for z > 0 Fz, (z) = P(n(fa—0y) < z) = P((Xq) <b+%) =
1—(1-Fx, (0, +2)" =1- e ¥ and Fz (x) =0 for z < 0, i.e. Z, ~ Exp(1/6;) for
all n € N. Thus n(fy — 6) = Z, <z ~ Exp(1/61) as n — oo. Using this, (a) and
Slutski’s theorem, we obtain that V;, = \/ﬁ(ﬁl —6) = \/ﬁ()?n — (014 02) — (X(l) — 92)) =
VA(Xn = (01 +02)) + J=n(X (1) = 02) = Yo+ 0,(1)Z, 5 Y ~ N(0,6%) as n — oo. By the
continuous mapping theorem, sin(n(fy — 2)) = sin(Z,) < sin(Z), with Z ~ Exp(1/61),

and cos (nl/?’(él —61)) = cos (n_1/6\/ﬁ(él —01)) = cos(n"V/%V;,) LN cos(0) =1 as n — oo.

in(n(62—0 d
000 (7)o, where Z ~ Exp(1/01).

P

. . . . . 1 X n .
If 05 is known, the Fisher information about 6, is Iy, = Var (%ﬂu) = Var( 1321 Xl) =
1

52~ The MLE for 6; is then 6, = X,, — 0 (this follows from (b)) which is unbiased for 6;
1

Therefore, by Slutski’s theorem

~ 2
and Var(0;) = % =4 - ﬁ, i.e. the Cramér-Rao bound is sharp.
1
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