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1. Consider a 2-period binomial model with S0 = 100, u = 1.1, d = 0.8, and r = 0.05.
Consider an American Put option with expiration N = 2 and strike price K = 90.

(a) Determine the price Vn at time n = 0, 1 of the American put option.

(b) Determine the optimal exercise time τ ∗(ω1ω2) for all ω1ω2.

(c) Suppose ω1ω2 = TT . Find the values of the replicating portfolio process
∆0,∆1(T ). Show that if the buyer exercises at time 1, then X1(T ) = V1(T ),
and if the buyer exercises at time 2, then X2(TT ) = V2(TT ).

Solution (a): Note that the risk neutral probbaility is p̃ = 5/6 and q̃ = 1/1. The
price process is given by

S0 = 100, S1(H) = 110, S1(T ) = 80, S2(HH) = 121, S2(HT ) = S2(TH) = 88, S@(TT ) = 64.

The intrinsic value process is given by

G0 = −10, G1(H) = −20, G1(T ) = 10,

G2(HH) = −31, G2(HT ) = 2, G2(TH) = 2, G2(TT ) = 26.

The payoff at time 2 is given by

V2(HH) = 0, V2(HT ) = 2, V2(TH) = 2, V2(TT ) = 26.

Applying the American algorithm, we get

V1(H) = max

(
−20,

1

1.05
[
5

6
× 0 +

1

6
× 2]

)
= 0.31746.

V1(T ) = max

(
10,

1

1.05
[
5

6
× 2 +

1

6
× 26]

)
= max(10, 5.71429) = 10.

V0 = max

(
−10,

1

1.05
[
5

6
× 0.31746 +

1

6
× 10]

)
= max(−10, 1.83925) = 1.83925.

Solution (b): The optimal exercise time is given by

τ ∗(HH) =∞, τ ∗(HT ) = 2, τ ∗(TH) = τ ∗(TT ) = 1.

1



Solution (c): We first calculate

∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
= −0.32275,

and

∆1(T ) =
V2(TH)− V2(TT )

S2(TH)− S2(TT )
= −1.

The replicating portfolio is described as follows. At time 0 sell the option for V0 =
1.83925, and short sell 0.32275 of a stock for 32.275. Deposit the proceeds in the
money market. So

X0 = 1.83925 = ∆0S0 + 34.11425.

At time 1, ω1 = T , so your wealth equals

X1(T ) = ∆0S1(T ) + (1.05)(34.11425) = 10 = V1(T ).

If the option is exercised at time 1, then the payoff is 10, and this is equal to
your wealth. If the option is not exercised, then you adjust your portfolio (without
changing your wealth), so

X1(T ) = 10 = ∆1(T )S1(T ) + 90,

and you can consume C1(T ) = V1(T )−Ẽ1((1.05)−1V2)(T ) = 10−5.71429 = 4.28571.
At time 2 ω2 = T , so

X2(TT ) = ∆1(T )S2(TT ) + (1.05)(90− 4.28571) = 26 = V2(TT ).

2. Consider the binomial model with up factor u = 2, down factor d = 1/2 and
interest rate r = 1/4. Consider a perpetual American put option with S0 = 2j, and
K = S02

−m. Suppose that the buyer of the option exercises the first time the price
is less than or equal to K/2.

(a) Show that the price at time zero of this option is given by

V0 =

 K − S0, if S0 ≤ K/2,
K2

4S0

, if S0 ≥ K.

(b) Consider the process v(S0), v(S1), · · · defined by

v(Sn =

 K − Sn, if Sn ≤ K/2,
K2

4Sn
, if Sn ≥ K.

Show that v(Sn) ≥ (K − Sn)+ for all n ≥ 0, and that the discounted process

{
(

4

5

)n
v(Sn) : n = 0, 1, · · ·} is a supermartingale.
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Solution (a): If S0 ≤ K/2, then the buyer exercises immediately. His payoff is
K − S0. So the price in this case must be K − S0 as required. If S0 ≥ K, then the
buyer uses the exercise policy τ−(m+1). Note that Sτ−(m+1)

= K/2, and by Theorem

5.2.3 we have

(
4

5

)τ−(m+1)

=

(
1

2

)m+1

.

So the price of the option in this case is

V0 = V τ−(m+1) = Ẽ

((
4

5

)τ−(m+1)

(K − Sτ−(m+1)
)

)
=

K

2

(
1

2

)m+1

=
KS02

−m

4S0

=
K2

4S0

.

Solution (b): We first show that v(Sn) ≥ (K − Sn)+. If Sn ≤ K/2, then v(Sn) =
(K − Sn) = (K − Sn)+. If Sn ≥ K, then v(Sn) = K2

4Sn
> 0 = (K − Sn)+. We

now show that the discounted process is a supermartingale. If Sn < K/2, then
Sn+1 ≤ K/2, thus

Ẽn

((
4

5

)n+1

v(Sn+1)

)
=

(
4

5

)n+1

[
1

2
(K − 2Sn) +

1

2
(K − Sn/2)]

=

(
4

5

)n
(
4

5
K − Sn)

<

(
4

5

)n
(K − Sn) =

(
4

5

)n
v(Sn).

If Sn = K/2, then Sn+1 ∈ {K/4, K}. Thus,

Ẽn

((
4

5

)n+1

v(Sn+1)

)
=

(
4

5

)n+1

[
1

2

K

4
+

1

2

3K

4
]

=

(
4

5

)n
2

5
K

<

(
4

5

)n
1

2
K =

(
4

5

)n
v(Sn).

If Sn ≥ K, then

Ẽn

((
4

5

)n+1

v(Sn+1)

)
=

(
4

5

)n+1

[
1

2

K2

8Sn
+

1

2

K2

2Sn
]

=

(
4

5

)n
K2

4Sn
=

(
4

5

)n
v(Sn).

In all cases we have Ẽn

((
4
5

)n+1
v(Sn+1)

)
≤
(
4
5

)n
v(Sn) as required.

3. Consider a random walk M0,M1, · · · with probability p for an up step and q = 1−p
for a down step, 0 < p < 1. For a ∈ R, define San = 10−n+aMn , n = 0, 1, 2, · · · .
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(a) For which values of a is the the process Sa0 , S
a
1 , · · · a martingale?

(b) Suppose now that p = 1/2, so M0,M1, · · · , is the symmetric random walk. Let
τm = inf{n ≥ 0 : Mn = m}. Determine the value of E(Saτm).

Solution (a): First note that the process (San) is adjusted, and

San+1 = 10−n−1+aMn+aXn+1 = San 10aXn+1−1.

Since Xn+1 is independent of the first n tosses we have

En(10aXn+1−1) = E(10aXn+1−1) = 10−1(10a p+ 10−a q).

Thus,
En(San+1) = San10−1(10a p+ 10−a q).

For the process to be a martingale, we need to find the values of a such that

10−1(10a p+ 10−a q) = 1

or equivalently,
p102a − 10 10a + q = 0.

Solving, we get

10a =
5±
√

25− pq
p

implying

a = log10

(
5±
√

25− pq
p

)
.

Solution (c): Observe that Saτm = 10−τm+aMτm = 10−τm+ma. By Theorem 5.2.3 we
have

E(Saτm) = 10maE((
1

10
)τn) = 10ma(10− 3

√
11)m.

4. Consider a 3-period (non constant interest rate) binomial model with interest rate
process R0, R1, R2 defined by

R0 = 0, R1(ω1) = .05 + .01H1(ω1), R2(ω1, ω2) = .05 + .01H2(ω1, ω2)

where Hi(ω1, · · · , ωi) equals the number of heads appearing in the first i coin tosses

ω1, · · · , ωi. Suppose that the risk neutral measure is given by P̃ (HHH) = P̃ (HHT ) =

1/8, P̃ (HTH) = P̃ (THH) = P̃ (THT ) = 1/12, P̃ (HTT ) = 1/6, P̃ (TTH) = 1/9,

P̃ (TTT ) = 2/9.

(a) Calculate B1,2 and B1,3, the time one price of a zero coupon maturing at time
two and three respectively.

(b) Consider a 3-period interest rate swap. Find the 3-period swap rate SR3, i.e.
the value of K that makes the time zero no arbitrage price of the swap equal
to zero.
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(c) Consider a 3-period floor that makes payments Fn = (.055 − Rn−1)
+ at time

n = 1, 2, 3. Find Floor3, the price of this floor.

Solution (a): We first calcultate the values of R0, R1, R2 and D1, D2, D3 in the
following tables:

ω1ω2 R0 R1 R2

HH 0 0.06 0.07
HT 0 0.06 0.06
TH 0 0.05 0.06
TT 0 0.05 0.05

ω1ω2
1

1 +R0

1

1 +R1

1

1 +R2

D1 D2 D3 P̃

HH 1 1
1.06

1
1.07

1 1
1.06

1
1.1342

1
4

HT 1 1
1.06

1
1.06

1 1
1.06

1
1.1236

1
4

TH 1 1
1.05

1
1.06

1 1
1.05

1
1.113

1
6

TT 1 1
1.05

1
1.05

1 1
1.05

1
1.1025

1
3

Since D1 = 1 and D2 is known at time 1, then B1,2 = Ẽ1(D2) = D2. This gives
B1,2(H) = 1/1.06 and B1,2(T ) = 1/1.05.

Now, D3 depends on the first two coin tosses only, and since D1 = 1 we have

B1,3(H) = Ẽ1(D3)(H) = D3(HH)P̃ (ω2 = H|ω1 = H) +D3(HT )P̃ (ω2 = T |ω1 = H)

=
1

1.1342

1

2
+

1

1.1236

1

2
= 0.8858,

and

B1,3(T ) = Ẽ1(D3)(T ) = D3(TH)P̃ (ω2 = H|ω1 = T ) +D3(TT )P̃ (ω2 = T |ω1 = T )

=
1

1.113

1

3
+

1

1.1025

2

3
= 0.9499.

Solution (b): From Theorem 6.3.7, we know that

SR3 =
1−B0,3

B0,1 +B0,2 +B0,3

.

Now,
B0,1 = Ẽ(D1) = 1,

D2 depends on the ω1 only, so

B0,2 = Ẽ(D2) =
1

1.06
P̃ (ω1 = H) +

1

1.05
P̃ (ω1 = T )

=
1

1.06

1

2
+

1

1.05

1

2
= 0.94789,
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Now, D3 depends only on ω1, ω2, hence

B0,3 = Ẽ(D3) =
1

1.1342
P̃ (ω1 = H,ω2 = H) +

1

1.1236
P̃ (ω1 = H,ω2 = T )

+
1

1.113
P̃ (ω1 = T, ω2 = H) +

1

1.1025
P̃ (ω1 = H,ω2 = H)

=
1

1.1342

1

4
+

1

1.1236

1

4
+

1

1.113

1

6
+

1

1.1025

1

3
= 0.895.

Thus,

SR3 =
1−B0,3

B0,1 +B0,2 +B0,3

=
1− 0.91787

2.86576
= 0.0287.

Solution (c): From Definition 6.3.8 we have

Floor3 =
3∑

n=1

Ẽ(Dn(0.055−Rn−1)
+.)

We display the values of (0.055−Rn−1)
+) in a table

ω1ω2 (0.055−R0)
+ (0.055−R1)

+ (0.055−R2)
+

HH 0.055 0 0
HT 0.055 0 0
TH 0.055 0.005 0
TT 0.055 0.005 0.005

Thus,
Ẽ(D1(0.055−R0)

+) = 0.055,

Ẽ(D2(0.055−R1)
+) = D2(H)(0)P (H)+D2(T )(0.005)P (T ) =

1

1.05
(0.005)

1

2
= 0.00238,

and

Ẽ(D3(0.055−R2)
+) = D3(TT )(0.055)P (TT ) =

1

1.1025
(0.005)

1

3
= 0.00151

Therefore,
Floor3 = 0.055 + 0.00238 + 0.00151 = 0.05889.
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