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1. Consider a 2-period binomial model with S0 = 100, u = 1.2, d = 0.7, and r = 0.1.
Consider now an Asian American put option with expiration N = 2, and intrinsic

value Gn = 95− S0 + · · ·+ Sn
n+ 1

, n = 0, 1, 2.

(a) Determine the price Vn at time n = 0, 1 of this American option.

(b) Find the optimal exercise time τ ∗(ω1ω2) for all ω1ω2.

(c) Suppose it is possible to buy this option at a price C > V0, where V0 is your
answer from part (a). Construct an explicit arbitrage strategy.

Solution (a): Note that the risk neutral probbaility is p̃ = 4/5 and q̃ = 1/5. The
price process is given by

S0 = 100, S1(H) = 120, S1(T ) = 70, S2(HH) = 144, S2(HT ) = S2(TH) = 84, S@(TT ) = 49.

The intrinsic value process is given by

G0 = −5, G1(H) = −15, G1(T ) = 10,

G2(HH) = −26.33, G2(HT ) = −6.33, G2(TH) = 10.33, G2(TT ) = 22.

The payoff at time 2 is given by

V2(HH) = V2(HT ) = 0, V2(TH) = 10.33, V2(TT ) = 22.

Applying the American algorithm, we get

V1(H) = max

(
−15,

1

1.1
[
4

5
× 0 +

1

5
× 0]

)
= 0.

V1(T ) = max

(
10,

1

1.1
[
4

5
× 10.33 +

1

5
× 22]

)
= max(10, 11.513) = 11.513.

V0 = max

(
−5,

1

1.1
[
4

5
× 0 +

1

5
× 11.513]

)
= max(−5, 2.093) = 2.093.

Solution (b): The optimal exercise time is given by

τ ∗(HH) = τ ∗(HT ) =∞, τ ∗(TH) = τ ∗(TT ) = 2.
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Solution (c): Suppose it is poosible to buy the option for price C > V0 = 2.093.
Then at time zero sell the option for C, use V0 = 2.093 to start a self-financing ,
and deposit C − 0.293 in the money market. To describe explicitly we first find

∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
= −0.23026,

∆1(H) =
V2(HH)− V2(HT )

S2(HH)− S2(HT )
= 0, ∆1(T ) =

V2(TH)− V2(TT )

S2(TH)− S2(TT )
= −0.33343.

So at time zero, the self financing portfolio has value

X0 = 2.093 = ∆0 S0 + 25.119,

where X0 −∆0S0 = 25.119 is the money market part.

at time 1, if ω1 = H, then

X1(H) = ∆0S1(H) + 1.1(25.119) = 0 = V1(H).

In this case we do not need to adjust our portfolio and at time 2, X2(HH) = 0 =
V2(HH). If ω1 = T , then

X1(T ) = ∆0S1(T ) + 1.1(25.119) = 11.513 = V1(T ).

If the buyer of the option decides to exercise, he gets 10, so you are left with

11.513− 10 + 1.1(C − 2.093) > 0.

If the buyer does not exercise, then you adjust your wealth as follows

X2(T ) = 11.513 = ∆1(T )S1(T ) + 34.8531.

At time 2, your wealth is

X2(TT ) = ∆1(T )S2(TT ) + 1.1(34.8531) = 22,

which equals the payoff of the buyer. You are left with (1.1)2(C − 2.093) > 0.

2. Consider the binomial model with up factor u = 2, down factor d = 1/2 and interest
rate r = 1/4. Consider a perpetual American put option with S0 = 8 and strike
price K = 10.

(a) Suppose the buyer of the option uses the strategy of exercising the first time
the price drops to 1 euro. What is then the price at time 0 of such an option?

(b) What is the probability that the price reaches 16 euros for the first time at
time n = 5?
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Solution (a): The buyer is using the exercise policy τ−3. Hence, the price at tome
0 should be

V0 = V τ−3 = Ẽ

((
4

5

)τ−3

(10− Sτ−3)

)
= (

1

2
)3(10− 1) =

9

8
.

Solution (b): The probability that the price reaches16 for the first time at time 5
is equal to the P ({τ1 = 5}). By Theorem5.2.5,

P ({τ1 = 5}) = 1/16.

3. Consider an American option with expiration dateN , intrinsic value processG0, G1, · · · , GN ,
and price process V0, V1, · · · , VN . Note that

Vn = max
τ∈Sn

Ẽn

[
1{τ≤N}

Gτ

(1 + r)τ−n

]
,

for n = 0, 1, · · · , N , where r is the interest rate.

(a) For n = 0, 1, · · · , N , let τ ∗n ∈ Sn be given by τ ∗n = inf{k ≥ n : Vk = Gk}, if the
infimum exists, otherwise τ ∗n =∞. Prove that

{
Vm∧τ∗n

(1 + r)m∧τ∗n
, m = n, · · · , N}

is a martingale.

(b) Use part (a) to show τ ∗n is an optimal stopping time for Vn. i.e.

Vn = Ẽn

[
1{τ∗n≤N}

Gτ∗n

(1 + r)τ∗n−n

]
.

Solution (a): For m ≥ n, we have

Vm∧τ∗n
(1 + r)m∧τ∗n

=
Vm

(1 + r)m
I{τ∗n≥m+1} +

Vτ∗n
(1 + r)τ∗n

I{τ∗n≤m}.

Now, the random variable I{τ∗n≥m+1} is known at time n, and on the set {τ ∗n ≥ m+1},
one has m+ 1 = (m+ 1) ∧ τ ∗n, and Vm = Ẽm(Vm+1/(1 + r)). So that

Vm
(1 + r)m

I{τ∗n≥m+1} = Ẽm

(
V(m+1)∧τ∗n

(1 + r)(m+1)∧τ∗n
I{τ∗n≥m+1}

)
.

Also, the random variable
Vτ∗n

(1+r)τ
∗
n
I{τ∗n≤m} is known at time m, and on the set {τ ∗n ≤

m}, τ ∗n = (m+ 1) ∧ τ ∗n. Hence,

Vτ∗n
(1 + r)τ∗n

I{τ∗n≤m} = Ẽm

(
V(m+1)∧τ∗n

(1 + r)(m+1)∧τ∗n
I{τ∗n≤m}

)
.
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Thus,
Vm∧τ∗n

(1 + r)m∧τ∗n
= Em

(
V(m+1)∧τ∗n

(1 + r)(m+1)∧τ∗n

)
,

and therefore, {
Vm∧τ∗n

(1 + r)m∧τ∗n
, m = n, · · · , N} is a martingale.

Solution (b): Since τ ∗n ≥ n, then by part (a) we have,

Vn
(1 + r)n

=
Vn∧τ∗n

(1 + r)n∧τ∗n
= Ẽn

(
VN∧τ∗n

(1 + r)N∧τ∗n

)
= Ẽn

(
VN∧τ∗n

(1 + r)N∧τ∗n
I{τ∗n≤N}

)
+ Ẽn

(
VN∧τ∗n

(1 + r)N∧τ∗n
I{τ∗n=∞}

)
= Ẽn

(
Gτ∗n

(1 + r)τ∗n
I{τ∗n≤N}

)
,

where we have used that on the set {τ ∗n =∞} one has VN∧τ∗n = VN = 0, and on the
set {τ ∗n ≤ n} on has VN∧τ∗n = Vτ∗n = Gτ∗n .

4. Consider a 3-period (non constant interest rate) binomial model with interest rate
process R0, R1, R2 defined by

R0 = 0, R1(ω1) = 0.02f(ω1), R2(ω1, ω2) = 0.02f(ω1)f(ω2)

where f(H) = 3, and f(T ) = 2. Suppose that the risk neutral measure is given

by P̃ (HHH) = P̃ (HTT ) = 1/10, P̃ (HHT ) = P̃ (HTH) = 1/5, P̃ (THH) =

P̃ (THT ) = 1/15, P̃ (TTH) = P̃ (TTT ) = 2/15.

(a) Calculate the time one price B1,3 of a zero coupon bond with maturity m = 3.

(b) Consider a 3-period interest rate swap. Find the 3-period swap rate SR3, i.e.
the value of K that makes the time zero no arbitrage price of the swap equal
to zero.

(c) Consider a 3-period Cap that makes payments Cn = (Rn−1 − 0.1)+ at time
n = 1, 2, 3. Find Cap3, the price of this Cap.

Solution (a): We first calcultate the values of R0, R1, R2 and D1, D2, D3 in the
following tables:

ω1ω2 R0 R1 R2

HH 0 0.06 0.18
HT 0 0.06 0.12
TH 0 0.04 0.12
TT 0 0.04 0.08

ω1ω2
1

1 +R0

1

1 +R1

1

1 +R2

D1 D2 D3 P̃

HH 1 1
1.06

1
1.18

1 1
1.06

1
1.2508

3
10

HT 1 1
1.06

1
1.12

1 1
1.06

1
1.1872

3
10

TH 1 1
1.04

1
1.12

1 1
1.04

1
1.1648

2
15

TT 1 1
1.04

1
1.08

1 1
1.04

1
1.1232

4
15
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Note that D3 depends on the first two coin tosses only, and since D1 = 1 we have

B1,3(H) = Ẽ1(D3)(H) = D3(HH)P̃ (ω2 = H|ω1 = H) +D3(HT )P̃ (ω2 = T |ω1 = H)

=
1

1.2508

1

2
+

1

1.1872

1

2
= 0.8209,

and

B1,3(T ) = Ẽ1(D3)(T ) = D3(TH)P̃ (ω2 = H|ω1 = T ) +D3(TT )P̃ (ω2 = T |ω1 = T )

=
1

1.1648

1

3
+

1

1.1232

2

3
= 0.8797.

Solution (b): From Theorem 6.3.7, we know that

SR3 =
1−B0,3

B0,1 +B0,2 +B0,3

.

Now,
B0,1 = Ẽ(D1) = 1,

B0,2 = Ẽ(D2) =
1

1.06
P̃ (ω1 = H) +

1

1.04
P̃ (ω1 = T )

=
1

1.06

3

5
+

1

1.04

2

5
= 0.9507,

B0,3 = Ẽ(D3) =
1

1.2508
P̃ (ω1 = H,ω2 = H) +

1

1.1872
P̃ (ω1 = H,ω2 = T )

+
1

1.1648
P̃ (ω1 = T, ω2 = H) +

1

1.1232
P̃ (ω1 = H,ω2 = H)

=
1

1.2508

3

10
+

1

1.1872

3

10
+

1

1.1648

2

15
+

1

1.1232

4

15
= 0.8444.

Thus,

SR3 =
1−B0,3

B0,1 +B0,2 +B0,3

=
1− 0.8444

2.7951
= 0.0557.

Solution (c): From Definition 6.3.8 we have

Cap3 =
3∑

n=1

Ẽ(Dn(Rn−1 − 0.1)+).

We display the values of (Rn−1 − 0.1)+ in a table

ω1ω2 (R0 − 0.1)+ (R1 − 0.1)+ (R2 − 0.1)+

HH 0 0 0.08
HT 0 0 0.02
TH 0 0 0.02
TT 0 0 0

Thus,

Cap3 = Ẽ(D3(R2−0.1)+) =
1

1.2508
(0.8)

3

10
+

1

1.1872
(0.02)

3

10
+

1

1.1648
(0.02)

2

15
= 0.1992.
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5. Let M0,M1, · · · , be the symmetric random walk, i.e. M0 = 0, and Mn =
∑n

i=1Xi,
where

Xi =

{
1, if ωi = H,
−1, if ωi = T,

for i ≥ 1. Let m ≥ 2 be an integer, and let k ∈ {1, · · · ,m− 1}. Define Y0 = k, and

Yn+1 = (Yn +Xn+1)I{Yn /∈{0,m}} + YnI{Yn∈{0,m}},

for n ≥ 0.

(a) Show that Y0, Y1, · · · is a martingale.

(b) Let T = inf{n ≥ 1 : Yn ∈ {0,m}}. Using the the Optional Sampling Theorem
show that E(YT ) = E(Y0) = k.

(c) Prove that P (YT = 0) =
m− k
m

.

Solution (a): First note that Yn is known at time n, hence (Yn) is an adjusted
process. Since Xn+1 is independent of the first n tosses, one has En(Xn+1) =
E(Xn+1) = 0. Thus,

En(Yn+1) = YnI{Yn /∈{0,m}} + YnI{Yn∈{0,m}} = Yn.

Therefore, Y0, Y1, · · · is a martingale.

Solution (b): First note that Yn∧T = YnI{T>n} + YT I{T≤n}, and by the Optional
Sampling Theorem, we have (Yn∧T ) is a martingale, so that

E(Yn∧T ) = E(Y0) = k.

Thus, for each n,

YT = YT I{T≤n} + YT I{T>n}
= Yn∧T − YnI{T>n} + YT I{T>n}.

Taking expectations gives,

E(YT ) = k − E(YnI{T>n}) + E(YT I{T>n})

for all n. We show now that

lim
n→∞

E(YnI{T>n}) = lim
n→∞

E(YT I{T>n}) = 0.

On the set {T > n}, the random variable Yn takes values in the set {1, · · · ,m− 1}.
Thus,

I{T>n} ≤ YnI{T>n} ≤ (m− 1)I{T>n}.

Taking expectations gives,

P ({T > n} ≤ E(YnI{T>n}) ≤ (m− 1)P ({T > n}).
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Since P (T <∞) = 1 (Thoerem 5.2.2), taking limits in the above inequalities gives
lim
n→∞

E(YnI{T>n}) = 0. Now consider the random variable YT , it takes values in the

set {0,m}, thus
0 ≤ YT I{T>n} ≤ mI{T>n},

so that for all n
0 ≤ E(YT I{T>n} ≤ mP ({T > n}).

Taking limits and using the fact that P (T <∞) = 1, we get lim
n→∞

E(YT I{T>n}) = 0.

This shows that E(YT ) = E(Y0) = k.

Solution (c): Note that YT takes only two values 0 and m. Let p = P (YT = 0),
then P (YT = m) = 1 − p, and E(YT ) = m(1 − p). On the other hand, by part (b)

we have E(YT ) = k, thus m(1− p) = k implying that P (YT = 0) = p =
m− k
m

.
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