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(1) Let (Ω,F ,P) be a probability space and (An)n∈N be a sequence of pairwise independent sets in
F (i.e. P(An ∩Am) = P(An)P(Am) for n 6= m) satisfying P(An) = 1/2 for all n ≥ 1. Let IAn

be
the indicator function of the set An and σ(IAn

) the σ-algebra generated by the random variable
IAn

, n ≥ 1.

(a) Prove that σ(IAn
) = {∅,Ω, An, A

c
n} and that the σ-algebras σ(IAn

) and σ(IAm
) are indepen-

dent whenever n 6= m, i.e. P(C ∩D) = P(C)P(D) for any C ∈ σ(IAn
) and any D ∈ σ(IAm

).
Conclude that IA1 , IA2 , · · · is a pairwise independent sequence. (1.5 pts)

(b) For n ≥ 1, define Xn = 2IAn
− 1. Set M0 = 0, Mn =

n∑
k=1

2k−1Xk for n ≥ 1 and let Yn =

M2
n −

(4n − 1)

3
for n ≥ 0. Consider the filtration {F(n) : n ≥ 0} where F(0) = {∅,Ω} and

F(n) = σ(IA1 , · · · , IAn) = the smallest σ-algebra containing all sets of the form {IAj ∈ B}
for any Borel set B and any 1 ≤ j ≤ n. Prove that the process {Yn : n ≥ 0} is a martingale
with respect to the filtration {F(n) : n ≥ 0}. (1.5 pts)

Proof(a): By definition σ(IAn) =
{
{IAn ∈ B} : B is a Borel set

}
. Since IAn takes only the

values 0 and 1, we see that

{IAn ∈ B} :=


∅ if 0, 1 /∈ B
Ac

n if 0 ∈ B, and 1 /∈ B
An if 1 ∈ B, and 0 /∈ B
Ω if 0, 1 ∈ B.

Thus, σ(IAn
) = {∅,Ω, An, A

c
n}.

Next wee need to show that the σ-algebras σ(IAn) and σ(IAm) are independent whenever
n 6= m, i.e. P(C ∩ D) = P(C)P(D) for any C ∈ σ(IAn) and any D ∈ σ(IAm). First note that
σ(IAn

) = {∅,Ω, An, A
c
n} and σ(IAm

) = {∅,Ω, Am, A
c
m}. If C or D is either ∅ or Ω, then the result

is trivially true. So we only need to consider the case C ∈ {An, A
c
n} and D ∈ {Am, A

c
m}. By

hypothesis, P(An ∩Am) = P(An)P(Am). For the other cases, we first note that

P(An) = P(An ∩Ac
m) + P(An ∩Am) = P(An ∩Ac

m) + P(An)P(Am),

implying

P(An ∩Ac
m) = P(An)− P(An)P(Am) = P(An)

(
1− P(Am)

)
= P(An)P(Ac

m).

Similarly,

P(Am) = P(Am ∩Ac
n) + P(Am ∩An) = P(Am ∩Ac

n) + P(An)P(Am),

leading to P(Am ∩Ac
n) = P(Am)P(Ac

n). Finally,

P
(
Ac

n ∩Ac
m

)
= P

(
(An ∪Am)c

)
= 1− P

(
An ∪Am

)
= 1− (P (An) + P(Am)− P(An ∩Am))

= 1− (P (An) + P(Am)− P(An)P(Am))

= (1− P(An))(1− P(Am))

= P(Ac
n)P(Ac

m).

This shows that σ(IAn) and σ(IAm) are independent whenever n 6= m. Since by definition two
random variables X and Y are independent if σ(X) and σ(Y ) are independent, we conclude that
the sequence IA1

, IA2
, · · · is pairwise independent.
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Proof(b): First note that

Xn(ω) =

{
1 ω ∈ An

−1 ω /∈ An.

From here we see that F(n) = σ(X1, · · · , Xn) and E(Xn) = 2P(An) − 1 = 0 for all n ≥ 1.
Since F(1) ⊂ F(2) ⊂ · · · ⊂ F(n), we see that Mn is F(n)-measurable implying that Yn is
F(n)-measurable and hence the process {Yn : n ≥ 0} is adapted to the filtration {F(n) :
n ≥ 0}. To show that the process {Yn : n ≥ 0} is a martingale, it is enough to show that
E[Yn+1|F(n)] = Yn, for then by the repeated application of the iterated conditioning property we
will have E[Yn|F(m)] = Ym for any m < n (see the solutions of the Mock Mid-term). Note that

M2
n+1 =

(
Mn + 2nXn+1

)2
= M2

n + 2n+1MnXn+1 + 4nX2
n+1.

Since Xn+1 is independent of F(n), we have E[Xn+1|F(n)] = E[Xn+1] = 0 and E[X2
n+1|F(n)] =

E[X2
n+1] = 1. By linearity of the conditional expectation, the F(n)-measurability of Mn and the

take out what you know property, we have

E[M2
n+1|F(n)] = M2

n + 2n+1MnE[Xn+1] + 4nE[X2
n+1] = M2

n + 4n.

Thus,

E[Yn+1|F(n)] = E[M2
n+1|F(n)]− (4n+1 − 1)

3
= M2

n + 4n − (4n+1 − 1)

3
= M2

n −
(4n − 1)

3
= Yn.

Therefore, {Yn : n ≥ 0} is a martingale with respect to the filtration {F(n) : n ≥ 0}.

(2) Let {W (t) : t ≥ 0} be a Brownian motion defined on a probability space (Ω,F ,P), and let
{F(t) : t ≥ 0} be a filtration for the Brownian motion. Define a process {X(t) : t ≥ 0} by

X(t) = etW (t)−t3+1, t ≥ 0.

(a) Prove that P(X(1) > 1) = 1/2. (1 pt)

(b) Derive an expression for Var[X(t)], the variance of X(t). (1.5 pts)

(c) For s < t, determine an expression for E[X(t)|F(s)]. (1.5 pts)

Proof (a): We have X(1) = eW (1), with W (1) a standard normal random variable (so mean
zero and variance 1). Thus,

P(X(1) > 1) = P(ln(X(1) > 0)

= P(W (1) > 0)

= 1− P(W (1) ≤ 0)

= 1−N(0) = 1/2,

where N denotes the cumulative distribution function of the standard normal distribution.

Proof (b): We first calculate the expectation of X(t), we have

E[X(t)] = e−t
3+1E[etW (t)] = e−t

3+1e
1
2 t

3

= e−
1
2 t

3+1,

where in the second equality we used that the moment generating function of the N (0, t) random

variable W (t) has value E[euW (t)] = e
1
2u

2t (in our case u = t). Next we calculate the expectation

of X2(t) = e2tW (t)−2t3+2,

E[X2(t)] = e−2t
3+2E[e2tW (t)] = e−2t

3+2e
1
2 4t

3

= e2.

Thus,

Var(X(t) = E[X2(t)]− (E[X(t)])2 = e2 − e−t
3+2 = e2(1− e−t

3

).
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Proof (c): Using the fact that W (s) is F(s)-measurable and that W (t)−W (s) is independent
of F(s), we have by the properties of conditional expectation,

E[X(t)|F(s)] = e−t
3+1E[etW (t)|F(s)]

= e−t
3+1E[et(W (t)−W (s))+tW (s)|F(s)]

= e−t
3+1etW (s)E[et(W (t)−W (s))|F(s)]

= e−t
3+1etW (s)E[et(W (t)−W (s))]

= e−t
3+1etW (s)e

1
2 t

2(t−s)

= etW (s)− 1
2 t

2(t+s)+1,

where in the first equality we used the linearity of the conditional expectation, in the third equality
we used the property take out what you know, in the fourth equality we used the independence
of W (t)−W (s) and F(s) and in the fifth equality we used the fact that the moment generating

function of W (t)−W (s) is given by E[eu(W (t)−W (s)] = e
1
2u

2(t−s) for u ∈ R.

(3) Let {W (t) : t ≥ 0} and {V (t) : t ≥ 0} be two independent Brownian motions defined on the
same probability space (Ω,F ,P). By independence we mean that W (t) and V (s) are independent
for all s, t > 0. Let 0 < ρ < 1 be a positive real number and define a process {Z(t) : t ≥ 0} by

Z(t) = ρW (t) +
√

1− ρ2 V (t). Prove that the process {Z(t) : t ≥ 0} is a Brownian motion. (3
pts)

(Hint: ifX and Y are independent normally distributed random variables withX beingN (µ1, σ
2
1)

and Y being N (µ2, σ
2
2), then X + Y is normally N (µ1 + µ2, σ

2
1 + σ2

2) distributed).

Proof: We check that the process {Z(t) : t ≥ 0} satisfies all the properties of a Brownian motion.
We have

(i) Z(0) = ρW (0) +
√

1− ρ2 V (0) = 0.

(ii) Since both {W (t) : t ≥ 0} and {V (t) : t ≥ 0} have continuous paths and a linear combination
of continuous functions is continuous, we that the process has continuous paths.

(iii) Let 0 = t0 < t1 < · · · < tm, then W (ti+1) −W (ti) is independent of W (tj+1) −W (tj) and
V (ti+1)−V (ti) is independent of V (tj+1)−V (tj) for all i 6= j. Furthermore, W (ti+1)−W (ti)
is independent of V (tj+1) − V (tj) for all i, j = 1, · · ·m. Thus the increments Z(t1) −
Z(t0), · · · , Z(tm)− Z(tm−1) are independent.

(iv) Let s < t, then Z(t) − Z(s) = ρ(W (t) −W (s)) +
√

1− ρ2 (V (t) − V (s)). By hypothesis
the random variables W (t)−W (s) and V (t)− V (s) are independent and both are normally

N (0, t− s) distributed. Thus, ρ (W (t)−W (s)) and
√

1− ρ2 (V (t)− V (s)) are independent

with ρ (W (t)−W (s)) normallyN (0, ρ2(t−s)) distributed and
√

1− ρ2 (V (t)−V (s)) normally
N (0, (1 − ρ2)(t − s)) distributed. Using the hint we have that Z(t) − Z(s) is normally
N (0, t− s).

Therefore, {Z(t) : t ≥ 0} is a Brownian motion.


