Sketch of suggested solutions

Please email errors and/or suggestions to c.kreisbeck@uu.nl.

Problem 1.

a) The characteristic polynomial is det(A — M) = A? + 4. The eigenvalues are the roots of the
characteristic polynomial, hence A;/, = £2i.

(%1

A non-zero vector v = € C? is an eigenvector associated with \; = 2i, if it satisfies

(]
Av = A\v, or equivalently solves the following system of linear equations:

(]_ — 22’)1}1 + vy = 0,
—51)1 — (1 + Qi)UQ =0.

(1
YT -2

with ¢; € C\ {0}. Similarly, one finds that ¢, <1 :Ll%) with ¢y € C\ {0} are the eigenvectors

Hence,

corresponding to Ay = —24i.

b) The matrix A is diagonalizable, since the matrix

-1 -1
S_(l—Zi 1—1—2@')’
whose columns consist of eigenvectors associated with \; and Ay, respectively, is invertible.

Indeed, det S = —4i # 0. One can show that then A = SDS™! with D = (202 —02@')'

c¢) The general solution to %F = AF is given by

A A
_ 2it —2it
F(t) = cie (1 B 22.) + coe (1 n 22.)

for t € R with ¢;, ¢y € C. In order to find the solution that satisfies F'(0) = (0) we choose the

2
constants ¢; and ¢y such that

FO) = (01(1 —~ 2_2';14:05?1 + 2@‘)) - (g) '

Hence, ¢ = —c; and ¢; = —%.

Problem 2.

a) Assuming that the convergence radius of the power series function is co, we obtain for x € R
that

f(x) = Zn(n — a2 ?* = Z(n +2)(n + 1Day2™,



and

2 f(x) = Z a,x" % = Z ok,
n=0 n=2
Plugging this into (1) then yields
Z(n +2)(n + 1)ap0z™ + Z 2a,x" — Z 4a,_»x" = 0.
n=0 n=0 n=2

By the identity principle, we conclude that
2a9 + 2a9 = 0, 6az + 2a, = 0,
and
(n+2)(n+ 1Dayyo + 2a,, — 4a,—2 =0 for n > 2.

The latter can be rephrased as

4a,_2 — 2a,

Qpyo = CEDCEE) for n > 2,
or by an index shift as
a, = % for n > 4.
This is the desired recurrence relation.
b) If ap = 1 and a; = 0, we see that ay = —1 and a3 = 0. Since a, is given as a linear

combination of a,_4 and a,,_» for every integer n > 4, iterating this procedure gives that every
a, with n an odd positive integer is a linear combination of a; and as. Since a; = a3 = 0, it
follows that a,, = 0 for all odd positive integers n.

¢) Let us remark that in view of b), >° ., a,2z™ converges if and only if >°, ., az,z?* converges.
Here we choose the ratio test. Alternatively, one can also argue with the comparison test.
Since for every x € R,

2

2(k+1) 22k42 L

a T
lim 2(k+1)

=0<1
k—o00 g2k ’

= | e

lim
the ratio test gives the convergence of the power series Zkzo asrx®* for all z € R.
d) In view of b) and ¢),

_ - n_ - 2% _ = <_1)k 2% G <_372)k
f(x)—%anx —koa%az —;0 X x —Z T

= k=0

The right-hand side is the Taylor series expansion of 2 — e~ hence f(z) = e~ for x € R as
claimed. Since

ie_IZ = —2z¢*  and d—26_$2 = (42° — 2)e™
dr B dx? B ’

2

it is immediate to see that f(x) = e~ is a solution to (1).



Problem 3.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously
differentiable with jumps in all odd integers, i.e. in x = 2k + 1 with k£ € Z.

b) For k = 0 we have that
;1 1t 1
/o 2 /1 fle)dx 2 /0 o 4

In the case k # 0, we use integration by parts to obtain

N B 1 v 1 .
fr = —/ xe T dr = — / e " dr — ——e T
2 J 2ikm J, 2k

1 ' 1 . _ 1 £k
= 55 (e*lkw _ 60) . '_efszr — 121k7r ) 1 even,
e 2irk st — w2 if kodd.

c) Since f is piecewise continuously differentiable, the Fourier inversion formula tells us that
for z € R,

U@+ 1) = 3 e

k=—o00

where the series on the right-hand side converges. Due to the fact that f is continuous for all x €
R that are not odd integers, i.e. z # 2k +1 for all k € Z, one has that f(z) = 1(f(z7)+ f(2T))
in this case. On the other hand, we find that

%(f(zk 1)) 4 F(2k 4 1)) = %(1 +0) = % k4 1)

for all k£ € Z. Summing up, we have for all z € R that

F@) = S+ ) = 30 e

k=—oc0

Along with the Euler formula we find that

~

f@) = fo+ Y (fu + for) cos(kma) +i( fi — f-i) sin(kmz)
k=1

=aqap + Z ay cos(kmx) + by sin(kmz), z € R,
k=1

with ay = fo, ap = fk + f_k and b, = z(fk — f_k) for k € N. Using the calculations in b) gives

that ap = % and for k € N,

0 if k is even,
a =
Tl =2 if ks odd,

and

b —= if k is even,
£ if  is odd.

1
km



Finally, we obtain the Fourier sine and cosine series representation

1 e 9 > (_1 k+1 .
f(z) = 1 Z e cos(kmx) + Z - sin(kmzx), reR. (6)
k=1, kodd k=1
d) We set x =0 in (6) to find that
1 =~ 2
0=fO)=7- > &
k=1,kodd

which can be rewritten as
oo
> L-T
28]
k=1, kodd 8
2

Hence, the sought value of the series 1% + 3% + 5% + 7—12 +..08 &

Problem 4.

a) Following the separation of variables method, we assume that the solution u to (2) has the
form

u(z,t) = X(x)T'(t), reR, t>0,
with functions X : R — C and 7" : [0,00) — C. Plugging this ansatz into (2) gives that

X'(x) _ T
X(z) T

reR, t>0.

Since the right-hand side of this equation depends only on x and the left-hand side only on t,
there exists a constant u € C such that

X'(z) = uX(x), r € R,
T(t) = —uT(t), t>0.

The general (complex) solution to the differential equation X’ = pX is given by X (x) = ¢;et®
for x € R with a constant ¢; € C. Similarly, T'(t) = coe™# for t > 0 with a constant ¢, € C is
the general (complex) solution to 7' = —uT".

This implies that u(z,t) = ce®™ for z € R and ¢ > 0 with a constant ¢ € C. The initial
condition u(x,0) = €** requires that ce’* = €** for all x € R, which means that ¢ = 1 and
w=2.

Summing up, one finds that u(x,t) = @9 for x € R and ¢ > 0 is the desired solution.

b) Since for all z € R and t > 0,

0 0 ,
Eu(m,t) =% (x—t)=—g'(x —1)

and

) B ,

it follows that u(z,t) = g(x — t) indeed satisfies (2). Moreover, u(z,0) = g(x — 0) = g(x) for
z € R, so that also the initial condition (3) is fulfilled.



c¢) No. In fact, the function u defined by wu(z,t) = sin(x — t) for x € R and ¢ > 0 does not
have the multiplicative structure assumed in the separation of variables approach. This can be
proved by a contradiction argument as follows. Assume that u(z,t) = sin(x —t) = X (z)7T'(¢)
for x € R and ¢ > 0 with functions X : R — C and T": [0,00) — C. Then

sin(z) = T(0) X (z),
cos(r) = —sin(x — §) = =T(3) X (2)

for all z € R. Since the sine and cosine function do not just vary by a scalar factor, consequently,
T(0) =T(5) = 0. This yields sin(x) = cos(z) = 0 for all z € R, which is a contradiction.

Problem 5.

a) We recall that with F denoting the Fourier transformation,
(F()(s) = v'(s) =isd(s) and (F(u"))(s) = v"(s) = (is)*8(s) = —5"0(s)
for s € R. Hence, applying F to (5) results in
—5%0(s) + 4isd(s) + 30(s) = f(s), s €R.
We solve for 0 to obtain

s
o(s) = —s2 +4is+3

for s € R.
b) We calculate that

(Fg)(s) = §(s) = %/Ow(et et g %( 1 1 ) _ 1

1+is 3+is — 82+ 4is+ 3

c¢) By definition of the convolution product f % g and the function f one has that

(fxg)(x) = /_OO f(x—t)g(t)dt:2/:g(t) dt.

If x <0, then
(f x9)(x) =2/:1g(t)dt:0
For z € (0,1),
o =2 (o= [ = gt
and for x > 1,
(f * g)( ):Q/ilg(t)dt: e %6—393 e
L e e



Summing up,

g€ =+ 3 if z € (0,1),
(frg)x)=qs(1—ed)e ™ +(e—1)e® ifz>1,
0 otherwise.

d) In view of a) and b), we have that

o~

v=fg=[x*g,
and Fourier inversion implies that
v=fxg.

For an explicit expression for this convolution product see ¢). Hence, v = f % g is a particular
solution to (5).

e) The general solution to an inhomogeneous linear differential equation can be obtained by
adding a particular solution to a solution of the corresponding homogeneous equation, which
in the case of (5) is

V" + 40"+ 3v = 0. (7)

Since the roots of A\* + 4\ + 3 = 0 are exactly A = —1 and A\ = —3, the general (real) solution
Unom t0 (7) is given by

Vhom(t) = ce™" + Be™ for t € R,

with constants «, § € R. Hence, the general solution to (5) is v = ¥ + Vpem With © as in d).
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