
Sketch of suggested solutions

Please email errors and/or suggestions to c.kreisbeck@uu.nl.

Problem 1.

a) The characteristic polynomial is det(A− λI) = λ2 + 4. The eigenvalues are the roots of the
characteristic polynomial, hence λ1/2 = ±2i.

A non-zero vector v =

(
v1
v2

)
∈ C2 is an eigenvector associated with λ1 = 2i, if it satisfies

Av = λ1v, or equivalently solves the following system of linear equations:

(1− 2i)v1 + v2 = 0,

−5v1 − (1 + 2i)v2 = 0.

Hence,

v = c1

(
−1

1− 2i

)

with c1 ∈ C \ {0}. Similarly, one finds that c2

(
−1

1 + 2i

)
with c2 ∈ C \ {0} are the eigenvectors

corresponding to λ2 = −2i.

b) The matrix A is diagonalizable, since the matrix

S =

(
−1 −1

1− 2i 1 + 2i

)
,

whose columns consist of eigenvectors associated with λ1 and λ2, respectively, is invertible.

Indeed, detS = −4i 6= 0. One can show that then A = SDS−1 with D =

(
2i 0
0 −2i

)
.

c) The general solution to d
dt
F = AF is given by

F (t) = c1e
2it

(
−1

1− 2i

)
+ c2e

−2it
(
−1

1 + 2i

)

for t ∈ R with c1, c2 ∈ C. In order to find the solution that satisfies F (0) =

(
0
2

)
we choose the

constants c1 and c2 such that

F (0) =

(
−c1 − c2

c1(1− 2i) + c2(1 + 2i)

)
=

(
0
2

)
.

Hence, c2 = −c1 and c1 = − 1
2i

.

Problem 2.

a) Assuming that the convergence radius of the power series function is∞, we obtain for x ∈ R
that

f ′′(x) =
∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n,
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and

x2f(x) =
∞∑
n=0

anx
n+2 =

∞∑
n=2

an−2x
n.

Plugging this into (1) then yields

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

2anx
n −

∞∑
n=2

4an−2x
n = 0.

By the identity principle, we conclude that

2a2 + 2a0 = 0, 6a3 + 2a1 = 0,

and

(n+ 2)(n+ 1)an+2 + 2an − 4an−2 = 0 for n ≥ 2.

The latter can be rephrased as

an+2 =
4an−2 − 2an

(n+ 2)(n+ 1)
for n ≥ 2,

or by an index shift as

an =
4an−4 − 2an−2
n(n− 1)

for n ≥ 4.

This is the desired recurrence relation.

b) If a0 = 1 and a1 = 0, we see that a2 = −1 and a3 = 0. Since an is given as a linear
combination of an−4 and an−2 for every integer n ≥ 4, iterating this procedure gives that every
an with n an odd positive integer is a linear combination of a1 and a3. Since a1 = a3 = 0, it
follows that an = 0 for all odd positive integers n.

c) Let us remark that in view of b),
∑

n≥0 anx
n converges if and only if

∑
k≥0 a2kx

2k converges.
Here we choose the ratio test. Alternatively, one can also argue with the comparison test.

Since for every x ∈ R,

lim
k→∞

∣∣∣a2(k+1)x
2(k+1)

a2kx2k

∣∣∣ = lim
k→∞

∣∣∣ x2k+2k!

(k + 1)!x2k

∣∣∣ = lim
k→∞

x2

k + 1
= 0 < 1,

the ratio test gives the convergence of the power series
∑

k≥0 a2kx
2k for all x ∈ R.

d) In view of b) and c),

f(x) =
∞∑
n=0

anx
n =

∞∑
k=0

a2kx
2k =

∞∑
k=0

(−1)k

k!
x2k =

∞∑
k=0

(−x2)k

k!
.

The right-hand side is the Taylor series expansion of x 7→ e−x
2
, hence f(x) = e−x

2
for x ∈ R as

claimed. Since

d

dx
e−x

2

= −2xe−x
2

and
d2

dx2
e−x

2

= (4x2 − 2)e−x
2

,

it is immediate to see that f(x) = e−x
2

is a solution to (1).
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Problem 3.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously
differentiable with jumps in all odd integers, i.e. in x = 2k + 1 with k ∈ Z.

b) For k = 0 we have that

f̂0 =
1

2

∫ 1

−1
f(x) dx =

1

2

∫ 1

0

x dx =
1

4
.

In the case k 6= 0, we use integration by parts to obtain

f̂k =
1

2

∫ 1

0

xe−ikπx dx =
1

2ikπ

∫ 1

0

e−ikπx dx− 1

2ikπ
e−ikπ

=
1

2k2π2
(e−ikπ − e0)− 1

2iπk
e−ikπ =

{
− 1

2ikπ
if k even,

1
2ikπ
− 1

k2π2 if k odd.

c) Since f is piecewise continuously differentiable, the Fourier inversion formula tells us that
for x ∈ R,

1

2
(f(x−) + f(x+)) =

∞∑
k=−∞

f̂ke
−ikπx,

where the series on the right-hand side converges. Due to the fact that f is continuous for all x ∈
R that are not odd integers, i.e. x 6= 2k+ 1 for all k ∈ Z, one has that f(x) = 1

2
(f(x−) +f(x+))

in this case. On the other hand, we find that

1

2
(f(2k + 1)−) + f(2k + 1)+) =

1

2
(1 + 0) =

1

2
= f(2k + 1)

for all k ∈ Z. Summing up, we have for all x ∈ R that

f(x) =
1

2
(f(x−) + f(x+)) =

∞∑
k=−∞

f̂ke
−ikπx.

Along with the Euler formula we find that

f(x) = f̂0 +
∞∑
k=1

(f̂k + f̂−k) cos(kπx) + i(f̂k − f̂−k) sin(kπx)

= a0 +
∞∑
k=1

ak cos(kπx) + bk sin(kπx), x ∈ R,

with a0 = f̂0, ak = f̂k + f̂−k and bk = i(f̂k − f̂−k) for k ∈ N. Using the calculations in b) gives
that a0 = 1

4
and for k ∈ N,

ak =

{
0 if k is even,

− 2
k2π2 if k is odd,

and

bk =

{
− 1
kπ

if k is even,
1
kπ

if k is odd.
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Finally, we obtain the Fourier sine and cosine series representation

f(x) =
1

4
−

∞∑
k=1, k odd

2

k2π2
cos(kπx) +

∞∑
k=1

(−1)k+1

kπ
sin(kπx), x ∈ R. (6)

d) We set x = 0 in (6) to find that

0 = f(0) =
1

4
−

∞∑
k=1,k odd

2

k2π2
,

which can be rewritten as

∞∑
k=1, k odd

1

k2
=
π2

8
.

Hence, the sought value of the series 1
12

+ 1
32

+ 1
52

+ 1
72

+ . . . is π2

8
.

Problem 4.

a) Following the separation of variables method, we assume that the solution u to (2) has the
form

u(x, t) = X(x)T (t), x ∈ R, t ≥ 0,

with functions X : R→ C and T : [0,∞)→ C. Plugging this ansatz into (2) gives that

X ′(x)

X(x)
= − Ṫ (t)

T (t)
, x ∈ R, t > 0.

Since the right-hand side of this equation depends only on x and the left-hand side only on t,
there exists a constant µ ∈ C such that

X ′(x) = µX(x), x ∈ R,
Ṫ (t) = −µT (t), t > 0.

The general (complex) solution to the differential equation X ′ = µX is given by X(x) = c1e
µx

for x ∈ R with a constant c1 ∈ C. Similarly, T (t) = c2e
−µt for t > 0 with a constant c2 ∈ C is

the general (complex) solution to Ṫ = −µT .
This implies that u(x, t) = ceµ(x−t) for x ∈ R and t ≥ 0 with a constant c ∈ C. The initial
condition u(x, 0) = e2x requires that ceµx = e2x for all x ∈ R, which means that c = 1 and
µ = 2.
Summing up, one finds that u(x, t) = e2(x−t) for x ∈ R and t ≥ 0 is the desired solution.

b) Since for all x ∈ R and t > 0,

∂

∂t
u(x, t) =

∂

∂t
g(x− t) = −g′(x− t)

and

∂

∂x
u(x, t) =

∂

∂x
g(x− t) = g′(x− t),

it follows that u(x, t) = g(x − t) indeed satisfies (2). Moreover, u(x, 0) = g(x − 0) = g(x) for
x ∈ R, so that also the initial condition (3) is fulfilled.
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c) No. In fact, the function u defined by u(x, t) = sin(x − t) for x ∈ R and t ≥ 0 does not
have the multiplicative structure assumed in the separation of variables approach. This can be
proved by a contradiction argument as follows. Assume that u(x, t) = sin(x − t) = X(x)T (t)
for x ∈ R and t ≥ 0 with functions X : R→ C and T : [0,∞)→ C. Then

sin(x) = T (0)X(x),

cos(x) = − sin(x− π
2
) = −T (π

2
)X(x)

for all x ∈ R. Since the sine and cosine function do not just vary by a scalar factor, consequently,
T (0) = T (π

2
) = 0. This yields sin(x) = cos(x) = 0 for all x ∈ R, which is a contradiction.

Problem 5.

a) We recall that with F denoting the Fourier transformation,

(F(v′))(s) = v̂′(s) = isv̂(s) and (F(v′′))(s) = v̂′′(s) = (is)2v̂(s) = −s2v̂(s)

for s ∈ R. Hence, applying F to (5) results in

−s2v̂(s) + 4isv̂(s) + 3v̂(s) = f̂(s), s ∈ R.

We solve for v̂ to obtain

v̂(s) =
f̂(s)

−s2 + 4is+ 3

for s ∈ R.

b) We calculate that

(Fg)(s) = ĝ(s) =
1

2

∫ ∞
0

(e−t − e−3t)e−ist dt =
1

2

( 1

1 + is
− 1

3 + is

)
=

1

−s2 + 4is+ 3
.

c) By definition of the convolution product f ∗ g and the function f one has that

(f ∗ g)(x) =

∫ ∞
−∞

f(x− t)g(t) dt = 2

∫ x

x−1
g(t) dt.

If x ≤ 0, then

(f ∗ g)(x) = 2

∫ x

x−1
g(t)dt = 0.

For x ∈ (0, 1),

(f ∗ g)(x) = 2

∫ x

0

g(t) dt =

∫ x

0

e−t − e−3t dt =
1

3
e−3x − e−x +

2

3
.

and for x ≥ 1,

(f ∗ g)(x) = 2

∫ x

x−1
g(t)dt = −1

3
e−3x+3 + e−x+1 +

1

3
e−3x − e−x

=
1

3
(1− e3)e−3x + (e− 1)e−x.
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Summing up,

(f ∗ g)(x) =


1
3
e−3x − e−x + 2

3
if x ∈ (0, 1),

1
3
(1− e3)e−3x + (e− 1)e−x if x ≥ 1,

0 otherwise.

d) In view of a) and b), we have that

v̂ = f̂ ĝ = f̂ ∗ g,

and Fourier inversion implies that

v = f ∗ g.

For an explicit expression for this convolution product see c). Hence, v̄ = f ∗ g is a particular
solution to (5).

e) The general solution to an inhomogeneous linear differential equation can be obtained by
adding a particular solution to a solution of the corresponding homogeneous equation, which
in the case of (5) is

v′′ + 4v′ + 3v = 0. (7)

Since the roots of λ2 + 4λ+ 3 = 0 are exactly λ = −1 and λ = −3, the general (real) solution
vhom to (7) is given by

vhom(t) = αe−t + βe−3t for t ∈ R,

with constants α, β ∈ R. Hence, the general solution to (5) is v = v̄ + vhom with v̄ as in d).
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