MATHEMATICAL METHODS 3 (WT3)

Exam 1

Please solve each exercise on a separate sheet of paper and write your name on <u>each</u>. No documents/electronic devices allowed. Answers must be justified. Each question is worth 0.5 p.

Good luck and veel succes!

Exercise 1 (3.5 points). Let A be the matrix

$$A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}.$$

- a) Compute the characteristic polynomial p_A of A.
- b) Find all complex eigenvalues of A.
- c) Find two eigenvectors u, v of A (such that one is not a multiple of the other).
- d) Find all real solutions of the system

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -2x + 3y. \end{cases}$$

e) Find all real solutions of the ODE

$$\ddot{z} - 3\dot{z} + 2z = 0.$$

Then, find the particular solution such that z(0) = 1 and $\dot{z}(0) = 2$.

f) Find a particular solution of the ODE

$$\ddot{z} - 3\dot{z} + 2z = \sin t.$$

of the form $z_p(t) = a \cos t + b \sin t$, with a, b two constants to be determined. Then, give the general real solution of that ODE.

g) Using the power series method find a particular solution of the ODE

$$\ddot{z} - 3\dot{z} + 2z = (t - 1)\sum_{n=0}^{\infty} \frac{t^n}{n!}$$

of the form $z(t) = c \sum_{n=0}^{\infty} \frac{t^{n+2}}{n!}$ for some constant c to be determined.

Exercise 2 (4.5 points). We consider the partial differential equation

(1)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 < x < 2, \quad 0 < y < 1,$$

where the unknown is a function of two variables u(x,y). We also consider the boundary conditions

(2)
$$u(x,0) = 0 = \frac{\partial u}{\partial u}(x,1) \text{ for } 0 < x < 2,$$

and

(3)
$$u(0,y) = 0$$
, $u(2,y) = y(2-y)$ for $0 < y < 1$.

a) Substitute a function of the form X(x)Y(y) into (1) and write an equivalent pair of ODEs for X and Y.

- b) Find all solutions of (1) of the form X(x)Y(y) and satisfying the two boundary conditions (2) and the first boundary condition in (3) (such that $X(x) \neq 0$ and $Y(y) \neq 0$ for 0 < x < 2 and 0 < y < 1).
- c) Let f be the function periodic of period 4 such that

$$f(y) = \begin{cases} y(2-y) & \text{if } 0 \leq y < 2, \\ y(2+y) & \text{if } -2 < y < 0. \end{cases}$$

Is f odd, or even, on the interval -2 < y < 2? Justify.

- d) Calculate the integral $\int_0^2 y(2-y)\sin(\frac{n\pi y}{2})dy$ for $n=0,1,2,\ldots$
- e) Show that

(4)
$$y(2-y) = c \sum_{m=1}^{\infty} \frac{1}{(2m-1)^3} \sin\left(\frac{(2m-1)\pi y}{2}\right) \text{ for } 0 < y < 2.$$

where c is a constant to be determined.

f) Is the function $g = \sin(3\pi y)$ orthogonal to f for the inner product given by

$$(u,v) = \int_{-2}^{2} u(y)v(y)dy$$
?

Is the function $h = \sin(\frac{5}{2}\pi y)$ orthogonal to f? Justify your answers.

- g) Find the solution of (1) satisfying the boundary conditions (2) and (3), expressed as a sum of series,
- h) Using e) show that

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2k-1)^3} = \frac{\pi^3}{32}.$$

i) Determine the radius of convergence of the power series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{(2k-1)^3}.$$

Exercise 3 (2 points). Let

$$f(x) = e^{-|x|} \cos x.$$

- a) Express f in terms of complex exponentials. Compute the Fourier transform \widehat{f} of f.
- **b)** Compute the Fourier transform \widehat{g} of the function $g(x) = e^{-|2x+1|} \cos(2x+1)$ and the Fourier transform $\widehat{f * g}$ of the function f * g.
- c) Suppose that h is an absolutely integrable function on $\mathbb R$ that solves the ODE

$$-h'' + 2h = f.$$

Find the Fourier transform \hat{h} of h.

d) Compute the expression

$$\int_{-\infty}^{\infty} f(3x)(\delta(x+\pi) + \delta(x-\pi))dx = \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} f(3x)(\delta_{\varepsilon}(x+\pi) + \delta_{\varepsilon}(x-\pi))dx,$$

where δ_{ε} is an approximation of the Dirac delta function δ .

Here is a reminder of various formulas and conventions that you might need:

(Complex exponential)

$$e^{ix} = \cos x + i \sin x$$
, $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$, $\cos x = \frac{e^{ix} + e^{-ix}}{2}$

• (Special values of trigonometric functions)

For all
$$n \in \mathbb{Z}$$
, $\sin(n\pi) = 0$ and $\cos(n\pi) = \begin{cases} 1 \text{ if } n \text{ is even,} \\ -1 \text{ if } n \text{ is odd.} \end{cases}$

• (Wronskian)

$$W(y_1, y_2)(x) = y_1(x)y_2'(x) - y_1'(x)y_2(x).$$

• (Fourier series for 2L-periodic functions)

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{\pi nx}{L} \right) + b_n \sin \left(\frac{\pi nx}{L} \right) \right),$$

where

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx, \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{\pi nx}{L}\right) dx, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{\pi nx}{L}\right) dx.$$

• (Complex Fourier series for T-periodic functions)

$$\hat{f}_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) e^{-ik\omega x} dx$$
 for $k \in \mathbb{Z}$, where $\omega = \frac{2\pi}{T}$,

and then

$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ik\omega x}.$$

• (Fourier transform, inverse Fourier transform)

$$(\mathcal{F}f)(\xi) = \widehat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ix\xi}dx, \quad (\mathcal{F}^{-1}g)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\xi)e^{ix\xi}d\xi$$

(Convolution)

$$(f*g)(x) = \int_{-\infty}^{\infty} f(x-y)g(y)dy, \quad \widehat{f*g} = \sqrt{2\pi}\widehat{f}\widehat{g}$$

• (Dirac delta function) An example of an approximation of the Dirac delta function is δ_{ε} , defined for $\varepsilon > 0$ by:

$$\delta_{\varepsilon}(x) = \begin{cases} \frac{1}{2\varepsilon} & \text{if } -\varepsilon \leqslant x \leqslant \varepsilon \\ 0 & \text{otherwise.} \end{cases}$$

By definition,

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0) = \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} f(x)\delta_{\varepsilon}(x)dx.$$