Midterm examination Parallel Algorithms (WISM 459).

Teacher: Rob H. Bisseling, Utrecht University

October 24, 2012

Each of the four questions is worth 10 points. Total time 60 minutes.

1. What is the value h of the h-relation defined by the following table?

	P(0)	P(1)	P(2)	P(3)
P(0)		19	10	
P(1)	19		5	6
P(2)	21	10		
P(3)	9	5	6	

In the table, the value in row s and column t is the number of data words that processor P(s) sends to processor P(t), for $0 \le s, t < 4$.

- 2. Explain the difference between local and global indices. Use the cyclic distribution of a vector for your explanation.
- 3. Give an efficient BSP algorithm for processor P(s) (in the notation we learned) for the computation of the output vector \mathbf{y} defined by $y_i = x_i + x_{n-1-i}$, for $0 \le i < n$, starting from a given input vector \mathbf{x} . The length of the vectors is n. Assume both vectors are block distributed and that $n \mod p = 0$.
- 4. Let **x** be an array of length *n* containing numerical values x_i , where $0 \le i < n$. The first stage of the *Haar wavelet transform* replaces each pair (x_i, x_{i+1}) by the pair $(x_i + x_{i+1}, x_i x_{i+1})$, for all even *i*. The original pair is overwritten. The second stage does the same for all pairs (x_i, x_{i+2}) , where *i* is a multiple of 4. The third stage does the same for all pairs (x_i, x_{i+4}) , where *i* is a multiple of 8. And so on for the following stages. There are $\log_2 n$ stages. Our aim is to do this in

parallel, using a suitable data distribution, and p processors. Assume that $p \ll n$, and that n and p are powers of 2. On output, the vector **x** must be in distributed form. Give an efficient BSP algorithm for processor P(s) for this computation. Analyse the BSP cost.