Final Exam Ergodic Theory

January 6, 2015 - You are allowed to use the lecture notes, but no other documents or calculators.

1. (a) Let $F:[0,1] \to [0,1]$ be the Farey map (see Figure 1), which is given by

$$Fx = \begin{cases} \frac{x}{1-x}, & \text{if } x \in \left[0, \frac{1}{2}\right], \\ \frac{1-x}{x}, & \text{if } x \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

Figure 1: The Farey map F.

Show that F is measure preserving with respect to the measure μ given by

$$\mu(A) = \int_A \frac{1}{x} d\lambda,$$

where A is a Lebesgue set and λ is the Lebesgue measure.

- (b) Give an example of a Lebesgue set A for which $\mu(F(A)) \neq \mu(A)$. Justify your answer.
- (c) For each $x \in (0,1]$, define the number n(x) by

$$n(x) = \min \{ n \ge 0 : F^n x \in (\frac{1}{2}, 1] \}.$$

Show that n(x) = n - 1 for all $x \in \left(\frac{1}{n+1}, \frac{1}{n}\right]$.

(d) Let T be the Gauss map, given by $Tx = \frac{1}{x} \pmod{1}$. Using the notation from part (c), show that for each $x \in (0, 1)$,

$$F^{n(x)+1}x = Tx.$$

- 2. Given a measure preserving system (X, \mathcal{F}, μ, T) , show that $T \times T$ is ergodic with respect to $\mu \times \mu$ if and only if $T \times T \times T$ is ergodic with respect to $\mu \times \mu \times \mu$.
- 3. (a) Let (X, \mathcal{F}, μ, T) be a measure preserving and ergodic system, and $f \in L^1(\mu)$. Show that for any $\alpha \in \mathbb{R}$ the set

$$X_{\alpha} = \left\{ x \in X : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(T^{i}x) = \alpha \right\}$$

satisfies $\mu(X_{\alpha}) \in \{0,1\}.$

(b) Let $\theta \in [0,1)\backslash \mathbb{Q}$ and let $S^1 = \{e^{2\pi i\alpha} : \alpha \in [0,1)\}$. Consider the dynamical system $(S^1, \mathcal{B}, \lambda, R_{\theta})$, where \mathcal{B} is the Lebesgue σ -algebra, λ is the normalised Lebesgue measure on S^1 and $R_{\theta}: S^1 \to S^1$ is given by $R_{\theta}(e^{2\pi i\alpha}) = e^{2\pi i(\alpha + \theta)}$. Let $f \in C([0,1])$. Using the notation of part (a), determine for each $\alpha \in \mathbb{R}$ the set X_{α} explicitly.

4. Let (X, \mathcal{F}, μ, T) be a measure preserving dynamical system. Let k > 0.

- (a) Show that for any finite partition α of X one has $h_{\mu}\left(\bigvee_{i=0}^{k-1} T^{-i}\alpha, T^{k}\right) = kh_{\mu}(\alpha, T)$.
- (b) Prove that $kh_{\mu}(T) \leq h_{\mu}(T^k)$.
- (c) Prove that $h_{\mu}(\alpha, T^k) \leq kh_{\mu}(\alpha, T)$.
- (d) Prove that $h_{\mu}(T^k) = kh_{\mu}(T)$.