DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UU. MADE AVAILABLE IN ELECTRONIC FORM BY THE T3C OF A—Eskwadraat IN 2005/2006, THE COURSE WISM464 WAS GIVEN BY K. DAJANI.

Ergodic theory (WISM464) 10 November 2005

Question 1

Consider ([0,1), \mathcal{B}), where \mathcal{B} is the Lebesgue σ -algebra. Let $T:[0,1)\to[0,1)$ be the continued fraction transformation, i.e., T0=0 and for $x\neq 0$,

$$Tx = \frac{1}{x} - \left| \frac{1}{x} \right|.$$

It is well-known that T is measure preserving and ergodic with respect to the Gauss-measure μ given by

$$\mu(B) = \int_{B} \frac{1}{\log 2} \frac{1}{1+x} \, \mathrm{d}x$$

for every Lebesque set B. For each $x \in [0,1)$ consider the sequence of digits of x defined by $x_n(x) = a_n = \left\lfloor \frac{1}{T^{n-1}x} \right\rfloor$. Let λ denote the normalized Lebesgue measure on [0,1).

- a) Show that $\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \infty \lambda$ a.e.
- b) Show that

$$\lim_{n \to \infty} (a_1 a_2 \dots a_n)^{1/n} = \prod_{k=1}^{\infty} \left(1 + \frac{1}{k(k+2)} \right)^{\frac{\log k}{\log 2}}$$

 λ a.e.

Question 2

Let (X, \mathcal{F}, μ) be a probability space, and $T: X \to X$ a measure preserving transformation. Let $A \in \mathcal{F}$ with $\mu(A) > 0$. For $x \in A$ let n(x) be the first return time of x to A, and μ_A the induced measure on the σ -algebra $\mathcal{F} \cap A$ on A. Consider the induced transformation T_A of T on A given by $T_A x = T^{n(x)} x$.

- a) Show that if T_A is ergodic and $\mu\left(\bigcup_{k\geq 1} T^{-k} A\right) = 1$, then T is ergodic.
- b) Assume further that T is invertible and ergodic.
 - (i) Show that

$$\int_A n(x) \, \mathrm{d}\mu = 1.$$

(ii) Prove that

$$\mu_A\left(\left\{x \in A : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} n(T_A^i(x)) = \frac{1}{\mu(A)}\right\}\right) = 1.$$

Question 3

Let (X, \mathcal{F}, μ) be a probability space, and $T: X \to X$ a measure preserving transformation. Let $f \in L^1(X, \mathcal{F}, \mu)$.

- a) Show that if $f(Tx) \leq f(X) \mu$ a.e., then $f(x) = f(Tx) \mu$ a.e.
- b) Show that $\lim_{n\to\infty} \frac{f(T^n x)}{n} = 0 \ \mu$ a.e.

Question 4

Let (X, \mathcal{F}, μ) be a probability space, and $T: X \to X$ a measure preserving transformation. Consider the transformation $T \times T$ defined on $(X \times X, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$ by $(T \times T)(x, y) = (Tx, Ty)$.

- a) Show that T is strongly mixing with respect to μ if and only if $T \times T$ is strongly mixing with respect $\mu \times \mu$.
- b) Show that T is weakly mixing with respect to μ if and only if $T \times T$ is ergodic with respect to $\mu \times \mu$.
- c) Show that $T = T_{\theta} = x + \theta \pmod{1}$ is an irrational rotation on [0, 1), then T_{θ} is not weakly mixing with respect to $\lambda \times \lambda$ where λ is the normalized Lebesgue measure on [0, 1).

Question 5

Let λ be the normalized Lebesgue measure on $([0,1),\mathcal{B})$ where \mathcal{B} is the Lebesgue σ -algebra. Consider the transformation $T:[0,1)\to[0,1)$ given by

$$Tx = \begin{cases} 3x & 0 \le x < 1/3\\ \frac{3}{2}x - \frac{1}{2} & 1/3 \le x < 1. \end{cases}$$

For $x \in [0,1)$ let

$$s_1(x) = \begin{cases} 3 & 0 \le x < 1/3 \\ \frac{3}{2} & 1/3 \le x < 1. \end{cases}$$

$$h_1(x) = \begin{cases} 0 & 0 \le x < 1/3\\ \frac{1}{2} & 0 \le x < 1. \end{cases}$$

and

$$a_1(x) = \begin{cases} 0 & 0 \le x < 1/3 \\ 1 & 1/3 \le x < 1. \end{cases}$$

Let $s_n = s_n(x) = s_1(T^{n-1}x)$, $h_n = h_n(x) = h_1(T^{n-1}x)$ and $a_n = a_n(x) = a_1(T^{n-1}x)$ for $n \ge 1$.

a) Show that for any $x \in [0,1)$ one has

$$x = \sum_{k=1}^{\infty} \frac{h_k}{s_1 s_2 \cdots s_k}.$$

- b) Show that T is measure preserving and ergodic with respect to the measure λ .
- c) Shwo that for each $n \geq 1$ and any sequence $i_1, i_2, \dots i_n \in \{0, 1\}$ one has

$$\lambda(\{x \in [0,1) : a_1(x) = i_1, a_2(x) = i_2, \dots a_n(x) = i_n\}) = \frac{2^k}{3^n},$$

where $k = \#\{1 \le j \le n : i_j = 1\}.$