--------------------------------------------------
Part 1
--------------------------------------------------

I will only provide the answer; you should figure out yourself how to
come to that answer.

1. (a)

2. (c)

3. (a)

4. (b)

5. (d)

6. (c) ; though (a) is also good. Both use "x" as the termination
metric; but both do not indeed say that we have a lower
bound. However, the loop's guard quite trivially implies that 0 is the
lower bound.


--------------------------------------------------
Part 1
--------------------------------------------------

1. (a) 
      {* N>=0 *}
      
      hasEqPair(READ a:[int], N:int) : bool

      {* return = (exists i,j: 0<=i,j<N /\ i<>j : a[i]=a[j]) *}


   (b)

      {* N>=0 /\ (forall i,j : 0<=i,j<N: (a[i]=a[j]) ==> (i=j))*}
      
      mkPerm(READ a:[int], N:int) : [int]

      {* subset N return a /\ subset N a return *}

   
   where "subset" is defined as follows:

      subset N a b = (forall i : 0<=i<N : (exists j: 0<=j<N : a[i]=b[j]))
      
      
   Note the above way to express "permutation" is incomplete; it works here because
   we have assumed the array to contain no duplicates. If a has duplicates, we should
   require that every element of return[0..N) should occur equally often in a[0..N),
   vice versa.

--------
2.

We can use the following invariant: 

  I : s = SUM(a[0..i))
      /\
      0<=i<=N
      /\
      ok = (s<=Max)

  -------------------------------------------------------------
  PROOF Pinit
  [A1:] N>=0 
  [A2:] Max>=0 
  [A3:] (forall k : 0=k<N : a[k]>=0)
  [G:]  wp init I
  -------------------------------------------------------------
  1. { wp calculation }

      wp init I =  (0 = SUM(a[0..0))
                   /\
                   0<=0<=N
                   /\
                   true = (0<=Max)

  1. { see the subproof below }  0 = SUM(a[0..0)

        PROOF
          SUM(a[0..0))
        = { empty enumeration }
          SUM []
        = {def. SUM}
          0

  2. { follows from A1 } 0<=0<=N
  3. { follows from A2 } true = (0<=Max)

  4. { conjunction of 1,2,3 and using the equality in 1 } wp init I

  DONE

  -------------------------------------------------------------
  PROOF PEC
  [A1:] s = SUM(a[0..i))
  [A2:] 0<=i<=N
  [A3:] ok = (s<=Max)
  [A4:] i>=N
  [G:]  wp (return := ok) (return = (SUM(a[0..N)) <= Max))
  -------------------------------------------------------------

   1. { calculate wp }
      G = (ok = (SUM(a[0..N)) <= Max))
   1. { from A2 and A4 } i=N

   2. { see subproof below } ok = (SUM(a[0..N)) <= Max
          
          PROOF
             SUM(a[0..N)) <= Max
          = { using 1 }
             SUM(a[0..i)) <= Max
          = { using A1 }
             s <= Max
          = { using A3 }
             ok

   DONE
             

  -------------------------------------------------------------
  PROOF PIC
  [A1:] s = SUM(a[0..i))
  [A2:] 0<=i<=N
  [A3:] ok = (s<=Max)
  [A4:] i<N
  [G:]  wp body I
  -------------------------------------------------------------

  1 { wp calculation }
   
     wp body I  =  (s+a[i] = SUM(a[0..i+1))
                    /\
                    0<=i+1<=N
                    /\
                    (s+a[i]<=Man  =  s+a[i]<=Max)


  2. { see subproof below } s+a[i] = SUM(a[0..i+1)

         PROOF
            SUM(a[0..i+1)
        = { split over array }
            SUM(a[0..i) ++ [a[i]])
        = { distributivity/homomorphism of SUM over ++ }
            SUM(a[0..i)) +  SUM([a[i]])
        = { using A1 }
            s +  SUM([a[i]])
        = { def. of SUM }
            s +  a[i]

  3. { follows from A2 and A4 } 0<=i+1<=N

  4. { trivial } s+a[i]<=Man  =  s+a[i]<=Max

  5. { conjunction of 2,3,4 } wp body I

  DONE

------------

No 4. (a)

{* k>0 *}
{* (1) ? *}   @x := k-1 ;
{* (2) ? *}   @y := k ;
{* (3) ? *}   r := P(@x,@y) ;
{* (4) ? *}   k := @y ;
{* r+k>0 *}



(4) --> r+@y>0

(3) --> @x>=0 /\ @y>0 /\ (r'+y' > @y+@x  ==>  r'+y'>0)  // y' is a fresh variable

(2) --> @x>=0 /\ k>0 /\ (r'+y' > k+@x  ==>  r'+y'>0) 

(1) --> k-1>=0 /\ k>0 /\ (r'+y' > k+k-1  ==>  r'+y'>0) 

--

(b) Yes the specification is valid; the given pre-condition implies
the calculated weakest pre-condition (1) above.

  (1) k>1 obviously implies k-1>=0
  (2) since k-1>=0 and k>0, then k+k-1 must be >0. So r'+y' is also >0.