
Final exam, Mathematical Modelling (WISB357)

Wednesday, 1 February 2017, 9.00-12.00, BBG 161

• Write your name on each page you turn in, and additionally, on the first page, write your
student number and the total number of pages submitted.

• For each question, motivation your answer.
• You may make use of results from previous subproblems, even if you have been unable to

prove them.
• For this midterm exam you are allowed to bring an A4 with notes on one side. You may

not consult solutions to the problems, nor use a graphical calculator or smart phone.

Solution. In small type-font letters.

Scoring.

Maximum possible points per part is shown in the margin.

Your score is the total number of points received divided by 3.

Problem 1. This problem concerns the “reaction-diffusion” equation

ut = Duxx − cu, for

{
−∞ < x <∞,
0 < t,

with the initial condition
u(x, 0) = f(x).

Assume c and D are positive constants.

(a) Using the Fourier Transform, find the solution of the above problem.

5 Solution. Let Uk(t) = Fu(x, t), k ∈ Z be the Fourier transform of u(x, t) in space, and

Fk = Ff(x). Then transforming the partial differential equation and initial condition yields

U̇k = −(k2D + c)Uk, Uk(0) = Fk, k ∈ Z.

The exact solution is

Uk(t) = exp
[
−(k2D + c)t

]
Fk = e−ct

[
e−k

2DtFk
]

Applying the inverse transform from Table 4.1 of the textbook to the terms in brackets we

find the solution

u(x, t) =
e−ct

2
√
πDt

∫ ∞
−∞

exp

[
(x− s)2

4Dt

]
f(s) ds.

(b) Show that the problem can also be solved by applying the transformation u = veat, for a
carefully chosen constant a, followed by using known solution of the diffusion equation.
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5 Solution. Let u(x, t) = v(x, t)eat, hence

ut = vte
at + aveat, uxx = vxxe

at, and u(x, 0) = v(x, 0) = f(x).

Substituting these into the partial differential equation and initial condition yields

vte
at + aveat = Dvxxe

at − cveat, v(x, 0) = f(x)

vte
at + (a+ c)veat = Dvxxe

at.

Choosing a = −c eliminates the second term. Dividing by eat leaves the diffusion equation

vt = Dvxx, v(x, 0) = f(x),

for which the solution is

v(x, t) =
1

2
√
πDt

∫ ∞
−∞

exp

[
(x− s)2

4Dt

]
f(s) ds.

To get u(x, t) we just multiply this by eat = e−ct.

Problem 2. Suppose “traffic” is governed by the Burgers equation

ρt + ρρx = 0,

with initial condition

ρ(x, 0) =


0, x ≤ −1,
1
2(1 + x), −1 < x < 1,

1, 1 ≤ x.

(a) Sketch the characteristics in the (x, t)-plane.

1 Solution. The equation for constant ρ is

ρt +
dX

dt
ρx = 0.

Evidently, dX
dt

= ρ(X(0), 0). That is, the characteristic emanating from X(0) = x has slope

ρ(x, 0). The characteristics emanating from x < −1 are vertical lines, perpendicular to the

x-axis. Those emanating from x > 1 are lines with slope 1 to the right. The characteristics

between -1 and 1 vary in angle from 90◦ to 45◦, with angle decreasing linearly from left to

right.

(b) Find the solution, ρ(x, t), using the method of characteristics.

6 Solution. The characteristic passing through a point (x1, t1) is a line satisfying

x1 = x0 + t1ρ(x0, t0). Along this line, the density is constant: ρ(x1, t1) = ρ(x0, t0).
For x0 < −1, we find x1 = x0, hence ρ(x1, t1) = 0.
For x0 > 1, we find x1 = x0 + t1 and ρ = 1.
For −1 ≤ x0 ≤ 1 we find x1 = x0 +

t1
2
(1 + x0). Solving this expression for x0 yields

x0 =
x1 − t1

2

1 + t1
2

, ρ(x1, t1) = ρ(x0, 0) =
1 + x1
2 + t1

with ρ(x1, t1) =
1
2
(x0 + 1). Summarizing, the solution is

ρ(x, t) =


0, x < −1,
1+x
2+t

, −1 ≤ x ≤ 1 + t,

1, x > 1 + t.
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(c) Find the points in the (x, t)-plane where ρ = 1/3.

2 Solution. In particular along this characteristic, ρ(x0, 0) = 1/3. This relation can be

solved for x0 to obtain

ρ(x0, 0) =
1

3
=

1

2
(1 + x0) ⇒ x0 = −1

3
.

The equation for the characteristic is

x = x0 + ρ(x0, 0)t = −
1

3
+

1

3
t.

Along this line ρ is constant and equal to 1/3.

(d) Show that v = 1
2ρ. Determine the flux J .

1 Solution. The transport equation is

ρt + J(ρ)x = 0 = ρt + J ′(ρ)ρx.

Evidently, J ′(ρ) = ρ, and thus

J(ρ) =
ρ2

2
.

Since J(ρ) = ρv(ρ), it follows that v(ρ) = ρ/2.

Problem 3. A linearly elastic bar is made of two different materials, and before being
stretched it occupies the interval 0 ≤ A ≤ `0. Also, before being stretched, for 0 ≤ A < A0,
the modulus and density are E = EL and R = RL, while for A0 < A < `0 they are E = ER

and R = RR. Both RL and RR are constants. (Hint: It is useful to define separate functions
UL(A), UR(A), TL(A), TR(A), etc. on the left and right parts of the domain.)

(a) The requirements at the interface, where A = A0, are that the displacement and stress
are continuous. Express these requirements mathematically, using one-sided limits.

2 Solution. Denote the displacement and stress functions by UL(A) and TL(A) for A < A0 and

UR(A) and TR(A) for A > A0. The boundary conditions are:

lim
A→A−

0

UL(A) = lim
A→A+

0

UR(A), lim
A→A−

0

TL(A) = lim
A→A+

0

TR(A).

(b) Suppose the bar is stretched and the boundary conditions are U(0, t) = 0 and U(`0, t) =
`− `0. Assume there are no body forces. Find the steady state solution for the density,
displacement and stress.
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8 Solution. The steady state elastic problem is

0 = ∂AT (A) = ∂A(E∂AU(A)), U(0) = 0, U(`0) = `− `0.

This equation holds on each interval 0 ≤ A ≤ A0 and A0 ≤ A ≤ `0, with the additional boundary

conditions at A0. Consequently, we obtain the following system of differential equations:

EL
∂2UL
∂A2 = 0, UL(0) = 0, UL(A0) = UR(A0),

ER
∂2UR
∂A2 = 0, UR(`0) = `− `0, ELU

′
L(A0) = ERU

′
R(A0).

Both displacements are linear functions in A:

UL(A) = αLA+ βL, UR(A) = αRA+ βr.

The boundary conditions at A = 0 and A = `0 imply

UL(0) = 0 = βL, UR(`0) = `− `0 = αR`0 + βR,

from which it follows that βR = `− (1 + αR)`0. The conditions at the interface become

UL(A0) = UR(A0) ⇐⇒ αLA0 = αRA0 + `− (1 + αR)`0,

TL(A0) = TR(A0) ⇐⇒ ELαL = ERαR.

This yields a linear system of equations for αL and αR that can be solved by substitution to

find

αL =
ER(`− `0)

A0(ER − EL) + EL`0
, αR =

EL(`− `0)
A0(ER − EL) + EL`0

,

from which the solutions are defined:

U(A) =

{
αLA, A ≤ A0,

αR(A− `0) + `− `0, A > A0,

T (A) = ELαL = ERαR,

R(A) =

{
RL

1+αL
, A < A0,

R(A) = RR
1+αR

, A > A0.

4


