Final exam, Mathematical Modelling (WISB357)

Tuesday, 30 Jan 2018, 13.30-16.30, BBG 0.23

- Write your name on each page you turn in, and additionally, on the first page, write your student number and the total number of pages submitted.
- · For each question, motivation your answer.
- You may make use of results from previous subproblems, even if you have been unable to prove them.
- For this exam you are allowed to bring an A4 with notes on both sides. You may not consult
 solutions to the exercises, nor use a graphical calculator or smart phone.

<u>Problem 1</u>. The relative air speed v(x) (with units m/s) at a height x > 0 above the wing of an airplane flying at constant speed V_0 (m/s) is modelled by the differential equation:

$$\rho V_0 \frac{\partial v}{\partial x} + \mu \frac{\partial^2 v}{\partial x^2} = 0,$$

where $\rho > 0$ is the constant density (kg/m^3) and $\mu > 0$ is the viscosity parameter with units $kg/(m \cdot s)$. In a coordinate system fixed to the wing, the boundary conditions are

$$v(0) = 0, \qquad v(L) = V_0,$$

where L is a given height (in m), far enough from the airplane to neglect its influence.

- (a) Nondimensionalize the equation and boundary conditions, using L and V_0 to rescale x and v, respectively. Show that you obtain a dimensionless parameter $Re = \rho V_0 L/\mu$, the "Reynolds number".
- (b) The Reynolds number is typically very large. Let $\varepsilon = Re^{-1} \ll 1$, and construct a two-term outer expansion for v(x). Use it to satisfy the boundary condition at x = L.
- (c) Construct a one-term inner expansion.
- (d) Use the matching condition to construct a one-term composite solution.
- (e) An airplane manufacturer can use a simplified model outside of the "boundary layer" which is defined as the region where $v(x) < 0.99V_0$. How thick is the boundary layer as a function of ε ?

<u>Problem 2</u>. Analysis of traffic in a section of highway within a distance π kilometers of a tunnel (i.e. $x \in [-\pi, \pi]$) has shown that density perturbations $\rho(x, t)$ to the otherwise steady flow evolve according to the relation

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} J(\rho) = 0, \qquad J(\rho) = \frac{\rho^2}{2}.$$

During a given morning rush hour, the perturbation is observed to be

$$\rho(0,x) = \rho_0(x) = -\sin x.$$

Answer the following questions:

- (a) What are the velocity function $v(\rho)$ and wave speed $c(\rho)$ that hold for this perturbation?
- (b) Sketch the characteristics and describe how the density perturbation evolves. (*Hint:* Here it is helpful to consider what happens to the characteristics emanating from points x_0 small enough that the approximation $\sin(x_0) \approx x_0$ holds.)
- (c) What is the speed of the resulting shock wave?

Problem 3. A manufacturer of bungee cords has developed a new cord for which the elasticity, expressed in terms of Young's modulus, varies with length according to $E(A) = (A/\ell_0)^{-2}$ for a cord of length ℓ_0 , cross-sectional area σ and constant density R_0 . To a good approximation, the bungee cord is linearly elastic $T(A) = E(A)\partial U/\partial A$ where U(A,t) is the displacement function. The momentum equation for the motion of the bungee cord is expressed in material coordinates as:

$$R_0 \frac{\partial^2 U}{\partial t^2} = gR_0 + \frac{\partial T}{\partial A}.$$

Suppose a student of mass M > 0 is fastened to the end of the bungee cord at $A = \ell_0$. The other end at A = 0 is attached to a high bridge, and the student jumps off and bounces around awhile until he reaches a steady state $\partial U/\partial t \equiv \partial^2 U/\partial t^2 \equiv 0$ (due to air friction, apparently).

- (a) State the boundary condition that holds for the stress T(A) at $A = \ell_0$ and solve the differential equation for the stress along the cord T(A), $0 \le A \le \ell_0$.
- (b) State the boundary condition on the displacement U(A) at A=0 and solve for U(A) and the equilibrium length $\ell=\ell_0+U(\ell_0)$.
- (c) Note that E(A) becomes unbounded as $A \to 0$. If the stress is to be finite at A = 0, what additional boundary condition should hold on the displacement at A = 0? Does your solution satisfy this condition? What does this condition imply about the stiffness or stretchability of the new bungee cord near A = 0?