
Final exam, Mathematical Modelling (WISB357)

Tuesday, 30 Jan 2018, 13.30-16.30, BBG 0.23

• Write your name on each page you turn in, and additionally, on the first page, write your
student number and the total number of pages submitted.

• For each question, motivation your answer.
• You may make use of results from previous subproblems, even if you have been unable to

prove them.
• For this exam you are allowed to bring an A4 with notes on both sides. You may not consult

solutions to the exercises, nor use a graphical calculator or smart phone.

Solution. In small type-font letters.

Scoring.

Maximum possible points per part is shown in the margin.

Your score is the total number of points received divided by 3.

Problem 1. The relative air speed v(x) (with units m/s) at a height x > 0 above the wing
of an airplane flying at constant speed V0 (m/s) is modelled by the differential equation:

ρV0
∂v

∂x
+ µ

∂2v

∂x2
= 0,

where ρ > 0 is the constant density (kg/m3) and µ > 0 is the viscosity parameter with units
kg/(m · s). In a coordinate system fixed to the wing, the boundary conditions are

v(0) = 0, v(L) = V0,

where L is a given height (in m), far enough from the airplane to neglect its influence.

(a) Nondimensionalize the equation and boundary conditions, using L and V0 to rescale x
and v, respectively. Show that you obtain a dimensionless parameter Re = ρV0L/µ, the
“Reynolds number”.

[2] Solution. Let v = V0ṽ and x = Lx̃. Then d
dx

= 1
L
d
dx̃
. The differential equation becomes

ρV0

L
ṽ′(x̃) +

µV 2
0

L2
ṽ′′(x̃).

Dividing by the first coefficient, introducing the Reynolds number, and dropping the tildes

gives

v′(x) +
1

Re
v′′(x) = 0.

The boundary conditions become v(0) = 0, v(1) = 1.

(b) The Reynolds number is typically very large. Let ε = Re−1 � 1, and construct a
two-term outer expansion for v(x). Use it to satisfy the boundary condition at x = L.
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[2] Solution. The differential equation becomes v′(x) + εv′′(x) = 0. Insert the asymptotic

expansion v(x) = v0(x) + εv1(x) + · · · . The order O(1) term is

v′0(x) = 0,

We can satisfy the boundary condition v0(1) = 1 to yield v0(x) = 1. However this does not

satisfy the other boundary condition v0(0) = 0. The order O(ε) term satisfies

v′1(x) + v′′0 (x) = 0,

from which follows that v1(x) is a constant function that needs to satisfy the boundary

conditions v1(0) = v1(1) = 0. Consequently, we find v1(x) = 0. In fact, all other terms are

identically zero and the outer solution is just v(x) = v0(x) = 1.

(c) Construct a one-term inner expansion.

[2] Solution. Introduce a rescaling x̄ = ε−γx near x = 0. The derivative rescales as

d/dx = ε−γd/dx̄. The differential equation becomes

ε−γV ′ + ε1−2γV ′′ = 0

Choosing γ = 1 makes these terms of equal order in ε, leaving

V ′ + V ′′ = 0

Integrate once to obtain V ′ + V = c, c a constant. Using an integrating factor we find the

solution

V (x̄) = e−x̄V (0) + c(1− e−x̄) = c(1− e−x̄),

where the last equality follows from the initial condition V (0) = 0.

(d) Use the matching condition to construct a one-term composite solution.

[2] Solution. The matching condition requires limx̄→∞ V (x̄) = limx→0 v0(x) = 1. Consequently, we

need c = 1. The composite solution is

v(x) ≈ v0(x) + V (x/ε)− v0(0) = 1− e−x/ε.

(e) An airplane manufacturer can use a simplified model outside of the “boundary layer”
which is defined as the region where v(x) < 0.99V0. How thick is the boundary layer as
a function of ε?

[2] Solution. The boundary layer is the region 0 ≤ x < δ, where

v(δ) = 0.99V0.

In terms of the rescaled variables, δ̂ = δ/L satisfies

v(δ̂) = 0.99 = 1− e−δ̂/ε.

We find:

e−δ̂/ε = 0.01 ⇒ δ̂ = ε ln 100

Consequently, the boundary layer thickness is δ = εL ln 100.
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Problem 2. Analysis of traffic in a section of highway within a distance π kilometers of a
tunnel (i.e. x ∈ [−π, π]) has shown that density perturbations ρ(x, t) to the otherwise steady
flow evolve according to the relation

∂ρ

∂t
+

∂

∂x
J(ρ) = 0, J(ρ) =

ρ2

2
.

During a given morning rush hour, the perturbation is observed to be

ρ(0, x) = ρ0(x) = − sinx.

Answer the following questions:

(a) What are the velocity function v(ρ) and wave speed c(ρ) that hold for this perturbation?

[2] Solution. The velocity and wave speed are related to the flux function by

J(ρ) = ρv(ρ), c(ρ) = J ′(ρ),

respectively. Apparently, v(ρ) = ρ/2 and c(ρ) = ρ.

(b) Sketch the characteristics and describe how the density perturbation evolves. (Hint:
Here it is helpful to consider what happens to the characteristics emanating from points
x0 small enough that the approximation sin(x0) ≈ x0 holds.)

[4] Solution. The characteristic curves are

X(t) = x0 + c(ρ0(x0))t = x0 + ρ0(x0)t.

Due to the initial condition, all characteristics on x0 < 0 have positive slope and those on

x > 0 have negative slope. The characteristics will intersect and form a shock wave. For

sinx0 ≈ x0, the characteristics approximately satisfy

X(t) = x0 − sin(x0)t ≈ x0(1− t)

These all coalesce at x = 0 at time t = 1. For larger |x0| the characteristics intersect at a

later time.
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(c) What is the speed of the resulting shock wave?
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[4] Solution. The Rankine-Hugoniot condition yields shock speed

s′(t) =
1

ρR − ρL

∫ ρR

ρL

c(ρ) dρ =
1

2

ρ2
R − ρ2

L

ρR − ρL
=
ρR + ρL

2

Since the initial density ρ0 is an odd function, we have ρR = −ρL. Hence, s′(t) = 0. The

shock wave is stationary.

Problem 3. A manufacturer of bungee cords has developed a new cord for which the elastic-
ity, expressed in terms of Young’s modulus, varies with length according to E(A) = (A/`0)

−2

for a cord of length `0, cross-sectional area σ and constant density R0. To a good approxima-
tion, the bungee cord is linearly elastic T (A) = E(A)∂U/∂A where U(A, t) is the displacement
function. The momentum equation for the motion of the bungee cord is expressed in material
coordinates as:

R0
∂2U

∂t2
= gR0 +

∂T

∂A
.

Suppose a student of mass M > 0 is fastened to the end of the bungee cord at A = `0. The
other end at A = 0 is attached to a high bridge, and the student jumps off and bounces
around awhile until he reaches a steady state ∂U/∂t ≡ ∂2U/∂t2 ≡ 0 (due to air friction,
apparently).

(a) State the boundary condition that holds for the stress T (A) at A = `0 and solve the
differential equation for the stress along the cord T (A), 0 ≤ A ≤ `0.

[4] Solution. The stress at A = `0 is the weight of the student divided by the cross-sectional

area: T (`0) = Mg/σ. At steady state the stress satisfies:

dT

dA
= −gR0.

Integrating this expression from A to `0 gives∫ `0

A

dT (a)

da
da =

∫ `0

A

−gR0 da ⇒ T (`0)− T (A) = −gR0(`0 −A).

Noting the boundary condition,

T (A) =
Mg

σ
+ gR0(`0 −A).

(b) State the boundary condition on the displacement U(A) at A = 0 and solve for U(A)
and the equilibrium length ` = `0 + U(`0).

[4] Solution. At A = 0 there is no displacement, so U(0) = 0. Since T (A) = E(A)UA, the

differential equation for the displacement is

E(A)
∂U

∂A
=
Mg

σ
+ gR0(`0 −A).

The displacement is

U(A) = U(0) +

∫ A

0

(
Mg

σ
+ gR0`0

)
a2

`20
− gR0

a3

`20
da =

(
Mg

σ
+ gR0`0

)
A3

3`20
− gR0

A4

4`20

The equilibrium length is

` =

(
1 +

Mg

3σ

)
`0 +

gR0

12
`20
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(c) Note that E(A) becomes unbounded as A → 0. If the stress is to be finite at A = 0,
what additional boundary condition should hold on the displacement at A = 0? Does
your solution satisfy this condition? What does this condition imply about the stiffness
or stretchability of the new bungee cord near A = 0?

[2] Solution. Finite stress as A→ 0 implies

lim
A→0

T (A) = lim
A→0

E(A)UA <∞.

For E(A) = A2/`20, this means

lim
A→0

UA
A2

<∞,

which (by l’Hôpital’s rule) implies that the function U(A) should satisfy the conditions

lim
A→0

UA(0) = lim
A→0

UAA(0) = 0.

This clearly holds for our solution. The bungee cord is very stiff near A = 0 since the rate

of deformation is zero, even under loading.
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