Final exam, Mathematical Modelling (WISB357)

Tuesday, 30 Jan 2018, 13.30-16.30, BBG 0.23

- Write your name on each page you turn in, and additionally, on the first page, write your student number and the *total number of pages submitted*.
- For each question, motivation your answer.
- You may make use of results from previous subproblems, even if you have been unable to prove them.
- For this exam you are allowed to bring an A4 with notes on both sides. You may not consult solutions to the exercises, nor use a graphical calculator or smart phone.

<u>Solution.</u> In small type-font letters. <u>Scoring.</u> Maximum possible points per part is shown in the margin. Your score is the total number of points received divided by 3.

Problem 1. The relative air speed v(x) (with units m/s) at a height x > 0 above the wing of an airplane flying at constant speed V_0 (m/s) is modelled by the differential equation:

$$\rho V_0 \frac{\partial v}{\partial x} + \mu \, \frac{\partial^2 v}{\partial x^2} = 0,$$

where $\rho > 0$ is the constant density (kg/m^3) and $\mu > 0$ is the viscosity parameter with units $kg/(m \cdot s)$. In a coordinate system fixed to the wing, the boundary conditions are

$$v(0) = 0, \qquad v(L) = V_0,$$

where L is a given height (in m), far enough from the airplane to neglect its influence.

- (a) Nondimensionalize the equation and boundary conditions, using L and V_0 to rescale x and v, respectively. Show that you obtain a dimensionless parameter $Re = \rho V_0 L/\mu$, the "Reynolds number".
- [2] <u>Solution</u>. Let $v = V_0 \widetilde{v}$ and $x = L \widetilde{x}$. Then $\frac{d}{dx} = \frac{1}{L} \frac{d}{d\widetilde{x}}$. The differential equation becomes

$$\frac{\rho V_0}{L} \widetilde{v}'(\widetilde{x}) + \frac{\mu V_0^2}{L^2} \widetilde{v}''(\widetilde{x}).$$

Dividing by the first coefficient, introducing the Reynolds number, and dropping the tildes gives

$$v'(x) + \frac{1}{Re}v''(x) = 0$$

The boundary conditions become v(0) = 0, v(1) = 1.

(b) The Reynolds number is typically very large. Let $\varepsilon = Re^{-1} \ll 1$, and construct a two-term outer expansion for v(x). Use it to satisfy the boundary condition at x = L.

[2] <u>Solution</u>. The differential equation becomes $v'(x) + \varepsilon v''(x) = 0$. Insert the asymptotic expansion $v(x) = v_0(x) + \varepsilon v_1(x) + \cdots$. The order $\mathcal{O}(1)$ term is

 $v_0'(x) = 0,$

We can satisfy the boundary condition $v_0(1) = 1$ to yield $v_0(x) = 1$. However this does not satisfy the other boundary condition $v_0(0) = 0$. The order $\mathcal{O}(\varepsilon)$ term satisfies

$$v_1'(x) + v_0''(x) = 0$$

from which follows that $v_1(x)$ is a constant function that needs to satisfy the boundary conditions $v_1(0) = v_1(1) = 0$. Consequently, we find $v_1(x) = 0$. In fact, all other terms are identically zero and the outer solution is just $v(x) = v_0(x) = 1$.

- (c) Construct a one-term inner expansion.
- [2] <u>Solution</u>. Introduce a rescaling $\bar{x} = \varepsilon^{-\gamma} x$ near x = 0. The derivative rescales as $d/dx = \varepsilon^{-\gamma} d/d\bar{x}$. The differential equation becomes

$$\varepsilon^{-\gamma}V' + \varepsilon^{1-2\gamma}V'' = 0$$

Choosing $\gamma=1$ makes these terms of equal order in $\varepsilon\text{,}$ leaving

$$V' + V'' = 0$$

Integrate once to obtain $V^\prime + V = c \text{, } c$ a constant. Using an integrating factor we find the solution

$$V(\bar{x}) = e^{-\bar{x}}V(0) + c(1 - e^{-\bar{x}}) = c(1 - e^{-\bar{x}})$$

where the last equality follows from the initial condition V(0) = 0.

- (d) Use the matching condition to construct a one-term composite solution.
- [2] <u>Solution</u>. The matching condition requires $\lim_{\bar{x}\to\infty} V(\bar{x}) = \lim_{x\to 0} v_0(x) = 1$. Consequently, we need c = 1. The composite solution is

$$v(x) \approx v_0(x) + V(x/\varepsilon) - v_0(0) = 1 - e^{-x/\varepsilon}.$$

- (e) An airplane manufacturer can use a simplified model outside of the "boundary layer" which is defined as the region where $v(x) < 0.99V_0$. How thick is the boundary layer as a function of ε ?
- [2] <u>Solution</u>. The boundary layer is the region $0 \le x < \delta$, where

$$v(\delta) = 0.99V_0$$
.

In terms of the rescaled variables, $\widehat{\delta} = \delta/L$ satisfies

$$v(\widehat{\delta}) = 0.99 = 1 - e^{-\widehat{\delta}/\varepsilon}$$

We find:

 $e^{-\widehat{\delta}/\varepsilon} = 0.01 \quad \Rightarrow \quad \widehat{\delta} = \varepsilon \ln 100$

Consequently, the boundary layer thickness is $\delta = \varepsilon L \ln 100$.

Problem 2. Analysis of traffic in a section of highway within a distance π kilometers of a tunnel (i.e. $x \in [-\pi, \pi]$) has shown that density perturbations $\rho(x, t)$ to the otherwise steady flow evolve according to the relation

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}J(\rho) = 0, \qquad J(\rho) = \frac{\rho^2}{2}.$$

During a given morning rush hour, the perturbation is observed to be

$$\rho(0,x) = \rho_0(x) = -\sin x.$$

Answer the following questions:

- (a) What are the velocity function $v(\rho)$ and wave speed $c(\rho)$ that hold for this perturbation?
- $\left[2\right]$ Solution. The velocity and wave speed are related to the flux function by

$$J(\rho) = \rho v(\rho), \qquad c(\rho) = J'(\rho),$$

respectively. Apparently, $v(\rho) = \rho/2$ and $c(\rho) = \rho$.

- (b) Sketch the characteristics and describe how the density perturbation evolves. (*Hint:* Here it is helpful to consider what happens to the characteristics emanating from points x_0 small enough that the approximation $\sin(x_0) \approx x_0$ holds.)
- [4] Solution. The characteristic curves are

$$X(t) = x_0 + c(\rho_0(x_0))t = x_0 + \rho_0(x_0)t.$$

Due to the initial condition, all characteristics on $x_0 < 0$ have positive slope and those on x > 0 have negative slope. The characteristics will intersect and form a shock wave. For $\sin x_0 \approx x_0$, the characteristics approximately satisfy

$$X(t) = x_0 - \sin(x_0)t \approx x_0(1-t)$$

These all coalesce at x=0 at time t=1. For larger $|x_0|$ the characteristics intersect at a later time.

(c) What is the speed of the resulting shock wave?

[4] Solution. The Rankine-Hugoniot condition yields shock speed

$$s'(t) = \frac{1}{\rho_R - \rho_L} \int_{\rho_L}^{\rho_R} c(\rho) \, d\rho = \frac{1}{2} \frac{\rho_R^2 - \rho_L^2}{\rho_R - \rho_L} = \frac{\rho_R + \rho_L}{2}$$

Since the initial density ho_0 is an odd function, we have $ho_R=ho_L$. Hence, s'(t)=0. The shock wave is stationary.

Problem 3. A manufacturer of bungee cords has developed a new cord for which the elasticity, expressed in terms of Young's modulus, varies with length according to $E(A) = (A/\ell_0)^{-2}$ for a cord of length ℓ_0 , cross-sectional area σ and constant density R_0 . To a good approximation, the bungee cord is linearly elastic $T(A) = E(A)\partial U/\partial A$ where U(A, t) is the displacement function. The momentum equation for the motion of the bungee cord is expressed in material coordinates as:

$$R_0 \frac{\partial^2 U}{\partial t^2} = gR_0 + \frac{\partial T}{\partial A}.$$

Suppose a student of mass M > 0 is fastened to the end of the bungee cord at $A = \ell_0$. The other end at A = 0 is attached to a high bridge, and the student jumps off and bounces around awhile until he reaches a steady state $\partial U/\partial t \equiv \partial^2 U/\partial t^2 \equiv 0$ (due to air friction, apparently).

- (a) State the boundary condition that holds for the stress T(A) at $A = \ell_0$ and solve the differential equation for the stress along the cord T(A), $0 \le A \le \ell_0$.
- [4] <u>Solution</u>. The stress at $A = \ell_0$ is the weight of the student divided by the cross-sectional area: $T(\ell_0) = Mg/\sigma$. At steady state the stress satisfies:

$$\frac{dT}{dA} = -gR_0$$

Integrating this expression from A to ℓ_0 gives

$$\int_{A}^{\ell_{0}} \frac{dT(a)}{da} \, da = \int_{A}^{\ell_{0}} -gR_{0} \, da \quad \Rightarrow \quad T(\ell_{0}) - T(A) = -gR_{0}(\ell_{0} - A).$$

Noting the boundary condition,

$$T(A) = \frac{Mg}{\sigma} + gR_0(\ell_0 - A).$$

- (b) State the boundary condition on the displacement U(A) at A = 0 and solve for U(A) and the equilibrium length $\ell = \ell_0 + U(\ell_0)$.
- [4] <u>Solution</u>. At A = 0 there is no displacement, so U(0) = 0. Since $T(A) = E(A)U_A$, the differential equation for the displacement is

$$E(A)\frac{\partial U}{\partial A} = \frac{Mg}{\sigma} + gR_0(\ell_0 - A)$$

The displacement is

$$U(A) = U(0) + \int_0^A \left(\frac{Mg}{\sigma} + gR_0\ell_0\right) \frac{a^2}{\ell_0^2} - gR_0\frac{a^3}{\ell_0^2} da = \left(\frac{Mg}{\sigma} + gR_0\ell_0\right)\frac{A^3}{3\ell_0^2} - gR_0\frac{A^4}{4\ell_0^2}$$

The equilibrium length is

$$\ell = \left(1 + \frac{Mg}{3\sigma}\right)\ell_0 + \frac{gR_0}{12}\ell_0^2$$

- (c) Note that E(A) becomes unbounded as $A \to 0$. If the stress is to be finite at A = 0, what additional boundary condition should hold on the displacement at A = 0? Does your solution satisfy this condition? What does this condition imply about the stiffness or stretchability of the new bungee cord near A = 0?
- $[2] \ \underline{\texttt{Solution.}}$ Finite stress as $A \to 0$ implies

$$\lim_{A \to 0} T(A) = \lim_{A \to 0} E(A)U_A < \infty.$$

For $E(A) = A^2/\ell_0^2$, this means

$$\lim_{A \to 0} \frac{U_A}{A^2} < \infty,$$

which (by l'Hôpital's rule) implies that the function U(A) should satisfy the conditions

$$\lim_{A \to 0} U_A(0) = \lim_{A \to 0} U_{AA}(0) = 0$$

This clearly holds for our solution. The bungee cord is very stiff near A=0 since the rate of deformation is zero, even under loading.