
Midterm Exam Soft Condensed Matter Theory, April 12, 2019, 09:00-12:00. This exam

consists of 17 items, the maximum score for each item is 6 points. Write your name on each page.

This is a closed-book exam, and electronic tools are not allowed. Give arguments for your answers

and write clearly -unreadable answers are no anwers. You may use that the viscosity of water is

η = 10−3Pa s, the Bjerrum length in vacuum at room temperature is 56nm, the Stokes-Einstein

equation for the diffusion coefficient of a sphere of radius a reads D = kBT/6πηa with T the

temperature and kB = 1.38 · 10−23J/K the Boltzmann constant. The differential of the internal

energy is dU = TdS − pdV + µdN + γdA+ ψdQ− fdL+ · · · with the usual meaning of symbols.

Problem 1 Consider a bulk fluid of N identical particles at temperature T and pressure p.

(a) Show that the combination G(N, p, T ) = U − TS + pV is the appropriate thermody-
namic potential, and combine the differential of G with extensivity arguments to derive
the Gibbs-Duhem equation.

Another one-component fluid, at chemical potential µ and temperature T in a volume V , is
in contact with a planar solid substrate of area A. The equilibrium density profile is denoted
by ρ(z) with z > 0 the distance from the substrate at z = 0, with ρb ≡ ρ(z →∞) the bulk
density. The interfacial tension between the fluid and the substrate is denoted by γ(µ, T ),
such that the grand potential of the system reads Ω(µ, V, T, A) = −p(µ, T )V + γ(µ, T )A.

(b) Show that

(
∂γ

∂µ

)
T

= −
∫ ∞
0

dz
(
ρ(z)− ρb

)
.

Problem 2 We now consider an aqueous 1:2 electrolye in the half space z > 0 in contact
with a solid electrode in the plane z = 0 at known potential ψ0 > 0. The solvent is
viewed as a dielectric continuum with relative dielectric contant ε at room temperature
T , such that the Bjerrum length is λB = e2/(4πε0εkBT ) with e the elementary charge.
The system also contains dissolved monovalent pointlike cations (charge +e, density profile
ρ+(z)) and divalent pointlike anions (charge −2e, density profile ρ−(z)). For z > 0 the
electrostatic potential ψ(z) satisfies the Poisson equation eψ′′(z)/kBT = −4πλBq(z) with
eq(z) the charge density. Far from the electrode we set the potential to zero and ρ+(∞) = ρs
and ρ−(∞) = ρs/2 with a known concentration ρs.

(a) Write q(z) in terms of ρ±(z), assume ρ±(z) to be given by a Boltzmann distribution, and
construct the nonlinear Poisson-Boltzmann (PB) equation for ψ(z). Give appropriate
boundary conditions.

(b) Consider small potentials 0 < ψ0 � 10 mV, argue that the PB equation can be
linearised as ψ′′(z) = κ2ψ(z), and give an expression for the Debye length κ−1.

(c) Solve the (linearised) PB equation using the boundary conditions, and calculate the
surface charge density eσ of the electrode assuming that ψ(z ≤ 0) = ψ0.

(d) Sketch ρ+(z) and ρ−(z) for 0 < z < 4κ−1 for ψ0 = 10mV in a single graph that includes
a scale on both axes, and give an interpretation of the plot in a few words.

(e) Give numerical estimates for (i) λB, (ii) κ−1, and (iii) the volume (in nm3) per ion in
the bulk, all for the case that ρs = 1 mM.
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Problem 3 Consider a homogeneous and isotropic macroscopic 3D bulk fluid of N identical
classical particles (mass m, positions ri, momenta pi) in a volume V at temperature T . The
hamiltonian reads H = K + Φ with kinetic energy K =

∑N
i=1 p

2
i /2m and potential energy

Φ =
∑N
i<j φ(|ri−rj|) with a radially symmetric pair potential φ(r). The two-body correlation

function is defined as ρ(2)(r, r′) = 〈∑N
i=1

∑N
j 6=i δ(r − ri)δ(r

′ − rj)〉 with the angular brackets
denoting a thermal average in the canonical ensemble.

(a) For the case that φ(r) ≡ 0, calculate the canonical partition function, the internal
energy 〈H〉, the pressure, the chemical potential, and the entropy.

(b) Give arguments why we can write ρ(2)(r, r′) = ρ2g(|r − r′|) with ρ = N/V the homo-
geneous density, and show for arbitrary φ(r) that 〈Φ〉 = 2πV ρ2

∫∞
0 r2g(r)φ(r)dr.

(c) For the case of a hard-sphere fluid with particle diameter σ and packing fraction
η = (π/6)ρσ3, sketch g(r) for 0 < r < 5σ for (i) η = 0.01 and (ii) η = 0.49, of course
with units on both axes. Calculate 〈Φ〉 for both cases.

We now assume that the fluid is a square-well fluid with φ(r) = ∞ for 0 < r ≤ σ, φ(r) =
−ε < 0 for σ < r ≤ 2σ, and φ(r) = 0 for r > 2σ. The Helmholtz free energy of this fluid is
denoted by F (N, V, T ).

(d) Calculate the second virial coefficient B2(T ) of this square-well fluid.

(e) Show that F (N, V, T ) = FHS(N, V, T )+∆F (N, V, T ) with FHS the hard-sphere free en-
ergy and ∆F = −2πεV ρ2

∫ 2σ
σ drr2

∫ 1
0 dλgλ(r) with gλ(r) the radial distribution function

in a square-well system with well-depth −λε.

(f) Show within first-order perturbation theory that F/V = FHS/V −aρ2, give an expres-
sion for a, and argue on this basis whether or not you expect the homogeneous fluid
phase at a density ρ = 0.4σ−3 to be stable at all T . Give arguments for your answer.

Problem 4 The radius of gyration Rg of a single polymer of N � 1 beads and contour length
Nb in a good solvent satisfies to a good approximation Rg = bN3/5. The (osmotic) pressure
Π of a solution of M of these polymers in a volume V , so with monomer volume fraction
φ = MNb3/V , can be written as b3Π/kBT = (φ/N)f(φ/φ∗) with f(x) to be determined.

(a) Explain in a few words (i) how Rg compares to that of a single ideal polymer and (ii)
how Rg gives rise to the monomer overlap volume fraction φ∗ = N−4/5.

(b) Show that f(x) = 1 + cx (with c an order-unity number) in the dilute regime (x� 1),
and give a DeGennes-type scaling argument why f(x) = xm for x � 1 in the semi-
dilute regime (φ∗ � φ � 1); determine m and the scaling of Π with φ in the latter
regime.

Dispersions of colloidal spheres of radius a exhibit Brownian motion.

(c) Show that the typical time tD for a colloid to diffuse over a distance of the order of its
own size scales, in a dilute dispersion, as tD ∝ a3. Briefly describe two experimental
techniques to study this Brownian motion for a = 1µm.

(d) Briefly describe the three ingredients of the DLVO-potential between a pair of colloidal
particles in an aqueous NaCl solution, and sketch this potential for a salt concentration
of (i) 1 mM and (ii) 1 M.

—————————————————– THE END ————————————————–
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