Midterm Exam Soft Condensed Matter Theory, April 12, 2019, 09:00-12:00. This exam
consists of 17 items, the maximum score for each item is 6 points. Write your name on each page.
This is a closed-book exam, and electronic tools are not allowed. Give arguments for your answers
and write clearly -unreadable answers are no anwers. You may use that the viscosity of water is
n = 1073Pa s, the Bjerrum length in vacuum at room temperature is 56nm, the Stokes-Einstein
equation for the diffusion coefficient of a sphere of radius a reads D = kgT/6mna with T the
temperature and kg = 1.38 - 10723J /K the Boltzmann constant. The differential of the internal
energy is dU = T'dS — pdV + udN + ~vdA + dQ — fdL + - - - with the usual meaning of symbols.

Problem 1 Consider a bulk fluid of N identical particles at temperature T" and pressure p.

(a) Show that the combination G(N,p,T) = U — T'S + pV is the appropriate thermody-
namic potential, and combine the differential of G with extensivity arguments to derive
the Gibbs-Duhem equation.

Another one-component fluid, at chemical potential u and temperature 7" in a volume V| is
in contact with a planar solid substrate of area A. The equilibrium density profile is denoted
by p(z) with z > 0 the distance from the substrate at z = 0, with p, = p(z — o0) the bulk
density. The interfacial tension between the fluid and the substrate is denoted by ~v(u, T),
such that the grand potential of the system reads Q(u, V., T, A) = —p(u, T)V + ~(u, T) A.

(b) Show that (gZ)T = — /OOO dz(p(z) - pb).

Problem 2 We now consider an aqueous 1:2 electrolye in the half space z > 0 in contact
with a solid electrode in the plane z = 0 at known potential )y > 0. The solvent is
viewed as a dielectric continuum with relative dielectric contant € at room temperature
T, such that the Bjerrum length is \g = €?/(4mepekpT) with e the elementary charge.
The system also contains dissolved monovalent pointlike cations (charge +e, density profile
p+(z)) and divalent pointlike anions (charge —2e, density profile p_(z)). For z > 0 the
electrostatic potential ¢ (z) satisfies the Poisson equation ey)”(2)/kgT = —4wApq(z) with
eq(z) the charge density. Far from the electrode we set the potential to zero and p, (00) = p,
and p_(00) = ps/2 with a known concentration p.

(a) Write ¢(2) in terms of p4(z), assume p4(z) to be given by a Boltzmann distribution, and
construct the nonlinear Poisson-Boltzmann (PB) equation for ¢(z). Give appropriate
boundary conditions.

(b) Consider small potentials 0 < ¢y < 10 mV, argue that the PB equation can be
linearised as 1”(z) = k?1(z), and give an expression for the Debye length .

(c) Solve the (linearised) PB equation using the boundary conditions, and calculate the
surface charge density eo of the electrode assuming that ¢ (z < 0) = 1.

(d) Sketch py(z) and p_(2) for 0 < z < 4k~" for 1)y = 10mV in a single graph that includes
a scale on both axes, and give an interpretation of the plot in a few words.

(e) Give numerical estimates for (i) Ag, (ii) 7!, and (iii) the volume (in nm?) per ion in
the bulk, all for the case that p, = 1 mM.



Problem 3 Consider a homogeneous and isotropic macroscopic 3D bulk fluid of NV identical
classical particles (mass m, positions r;, momenta p;) in a volume V' at temperature 7. The
hamiltonian reads H = K + ® with kinetic energy K = >~ , p?/2m and potential energy
® = Y, ¢(|r;—r;|) with a radially symmetric pair potential ¢(r). The two-body correlation
function is defined as p® (r,r') = (X, 31, 6(r — r;)0(x’ — r;)) with the angular brackets
denoting a thermal average in the canonical ensemble.

(a) For the case that ¢(r) = 0, calculate the canonical partition function, the internal
energy (H), the pressure, the chemical potential, and the entropy.

(b) Give arguments why we can write p® (r,r’) = p%g(|r — r'|) with p = N/V the homo-
geneous density, and show for arbitrary ¢(r) that (®) = 27V p? [5° r2g(r)p(r)dr.

(c) For the case of a hard-sphere fluid with particle diameter o and packing fraction
n = (m/6)pa3, sketch g(r) for 0 < r < 50 for (i) n = 0.01 and (ii) n = 0.49, of course
with units on both axes. Calculate (®) for both cases.

We now assume that the fluid is a square-well fluid with ¢(r) = oo for 0 < r < g, ¢(r) =
—e < 0 for o <r <20, and ¢(r) =0 for r > 20. The Helmholtz free energy of this fluid is
denoted by F(N,V,T).

(d) Calculate the second virial coefficient By(T) of this square-well fluid.

(e) Show that F/(N,V,T) = Fgs(N,V,T)+AF(N,V,T) with Fgg the hard-sphere free en-
ergy and AF = —271eV p? [27 drr? [} dA\ga(r) with gx(r) the radial distribution function
in a square-well system with well-depth —\e.

(f) Show within first-order perturbation theory that F/V = Fpg/V — ap?, give an expres-
sion for a, and argue on this basis whether or not you expect the homogeneous fluid
phase at a density p = 0.4073 to be stable at all T. Give arguments for your answer.

Problem 4 The radius of gyration R, of a single polymer of N > 1 beads and contour length
Nb in a good solvent satisfies to a good approximation Ry = bN 3/5. The (osmotic) pressure
IT of a solution of M of these polymers in a volume V', so with monomer volume fraction

¢ = MNbB/V, can be written as b*I1/kgT = (¢/N) f(¢/d*) with f(x) to be determined.

(a) Explain in a few words (i) how R, compares to that of a single ideal polymer and (ii)
how R, gives rise to the monomer overlap volume fraction ¢* = N —4/5,

(b) Show that f(z) = 1+ cz (with ¢ an order-unity number) in the dilute regime (z < 1),
and give a DeGennes-type scaling argument why f(z) = ™ for z > 1 in the semi-
dilute regime (¢* < ¢ < 1); determine m and the scaling of IT with ¢ in the latter
regime.

Dispersions of colloidal spheres of radius a exhibit Brownian motion.

(c) Show that the typical time ¢p for a colloid to diffuse over a distance of the order of its
own size scales, in a dilute dispersion, as tp o< a®. Briefly describe two experimental
techniques to study this Brownian motion for ¢ = 1um.

(d) Briefly describe the three ingredients of the DLVO-potential between a pair of colloidal
particles in an aqueous NaCl solution, and sketch this potential for a salt concentration
of (i) 1 mM and (i) 1 M.

THE END




