
Department of Information and Computing Sciences
Utrecht University

INFOAFP – Exam

Andres Löh

Wednesday, 15 April 2009, 09:00–12:00

Preliminaries

• The exam consists of 6 pages (including this page). Please verify that you got all
the pages.

• A maximum of 100 points can be gained.

• For every task, the maximal number of points is stated. Note that the points are
distributed unevenly over the tasks.

• One task is marked as (bonus) and allows up to 5 extra points.

• Try to give simple and concise answers! Please try to keep your code readable!

• When writing Haskell code, you can use library functions, but make sure that you
state which libraries you use.

Good luck!

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

Contracts (48 points total, plus 5 bonus points)

Here is a GADT of contracts:

data Contract :: ∗ → ∗where
Pred :: (a→ Bool)→ Contract a
Fun :: Contract a→ Contract b→ Contract (a→ b)

A contract can be a predicate for a value of arbitrary type. For functions, we offer
contracts that contain a precondition on the arguments, and a postcondition on the
results.

Contracts can be attached to values by means of assert. The idea is that assert will
cause run-time failure if a contract is violated, and otherwise return the original result:

assert :: Contract a→ a→ a
assert (Pred p) x = if p x then x else error "contract violation"
assert (Fun pre post) f = assert post ◦ f ◦ assert pre

For function contracts, we first check the precondition on the value, then apply the
original function, and finally check the postcondition on the result.

For example, the following contract states that a number is positive:

pos :: (Num a, Ord a)⇒ Contract a
pos = Pred (>0)

We have

assert pos 2 ≡ 2
assert pos 0 ≡ ⊥ (contract violation error)

1 (6 points). Define a contract

true :: Contract a

such that for all values x, the equation assert true x ≡ x holds. Prove this equation using
equational reasoning. •

Often, we want the postcondition of a function to be able to refer to the actual argu-
ment that has been passed to the function. Therefore, let us change the type of Fun:

Fun :: Contract a→ (a→ Contract b)→ Contract (a→ b)

The postcondition now depends on the function argument.

2 (4 points). Adapt the function assert to the new type of Fun. •

2

2

3 (4 points). Define a combinator

(_) :: Contract a→ Contract b→ Contract (a→ b)

that reexpresses the behaviour of the old Fun constructor in terms of the new and more
general one. •
4 (6 points). Define a contract suitable for the list index function (!!), i.e., a contract of
type

Contract ([a]→ Int→ a)

that checks if the integer is a valid index for the given list. •
5 (6 points). Define a contract

preserves :: Eq b⇒ (a→ b)→ Contract (a→ a)

where assert (preserves p) f x fails if and only if the value of p x is different from the
value of p (f x). Examples:

assert (preserves length) reverse "Hello" ≡ "olleH"
assert (preserves length) (take 5) "Hello" ≡ "Hello"
assert (preserves length) (take 5) "Hello world" ≡ ⊥

•6 (6 points). Consider

preservesPos = preserves (>0)
preservesPos′ = pos _ pos

Is there a difference between assert preservesPos and assert preservesPos′? If yes, give an
example where they show different behaviour. If not, try to prove their equality using
equational reasoning. •

We can add another contract constructor:

List :: Contract a→ Contract [a]

The corresponding case of assert is as follows:

assert (List c) xs = map (assert c) xs

7 (8 points). Consider

allPos = List pos
allPos′ = Pred (all (>0))

Describe the differences between assert allPos and assert allPos′, and more generally
between using List versus using Pred to describe a predicate on lists. (Hint: Think
carefully and consider different situations before giving your answer. What about using
the allPos and allPos′ contracts as parts of other contracts? What about lists of functions?
What about infinite lists? What about strict and non-strict functions working on lists?)
[No more than 60 words.] •

3

2

8 (8 points). Discuss the advantages and disadvantages of using contracts and using
QuickCheck properties. What is similar, what are the differences? [No more than 60
words.] •

9 (5 bonus points). Can contracts be translated into QuickCheck properties automati-
cally? If yes, try to define a function that does this. If not, discuss the difficulties. [No
more than 60 words.] •

Maps and folds (29 points total)

10 (8 points). For all f , g and z of suitable type, the equation

foldr f z ◦map g ≡ foldr (f ◦ g) z

holds. Prove this theorem using equational reasoning and induction on lists. •

11 (6 points). Translate the following program into System F, i.e., make all type abstrac-
tions and type applications explicit, and annotate all value-level lambda abstractions
with their types.

mm :: (a→ b)→ [[a]]→ [b]
mm = λf xss→ head (map (map f) xss)

(Hint: It is not necessary to translate head and map, but writing down their System F
types with explicit quantification will help you to know where to put type arguments.)

•

The following data type is known as a generalized rose tree:

data GRose f a = GFork a (f (GRose f a))

12 (3 points). What is the kind of GFork? •

If we instantiate f to [], we get a rose tree, a tree that in every node can have arbitrarily
many subtrees. Leaves can be represented by choosing an empty list:

leaf :: a→ GRose [] a
leaf x = GFork x []

13 (6 points). What if we instantiate f to Identity (where

newtype Identity a = Identity a

is the identity on the type level)? And what if we instantiate f to Maybe? What kind of
trees do we get, and what kind of familiar data structures are they similar to? [No more
than 40 words.] •

14 (6 points). Define an instance of class Functor for GRose, assuming that f is a Functor,
and defining a function fmap such that the passed function is applied to all the elements
of type a. •

4

2

Simulating inheritance (23 points total)

Using open recursion and an explicit fixed-point operator similar to

fix f = f (fix f)

we can simulate some features commonly found in OO languages in Haskell. In many
OO languages, objects can refer their own methods using the identifier this, and to
methods from a base object using super.

We model this by abstracting from both this and super:

type Object a = a→ a→ a
data X = X {n :: Int, f :: Int→ Int}
x, y, z :: Object X
x super this = X {n = 0, f = λi→ i + n this}
y super this = super {n = 1}
z super this = super { f = f super ◦ f super}

We can extend one “object” by another using extendedBy:

extendedBy :: Object a→ Object a→ Object a
extendedBy o1 o2 super this = o2 (o1 super this) this

By extending an object o1 with an object o2, the object o1 becomes the super object for o2.
Once we have built an object from suitable components, we can close it to make it

suitable for use using a variant of fix:

fixObject o = o (error "super") (fixObject o)

We close the object o by instantiating it with an error super object and with itself as this.

15 (3 points). What is the (most general) type of fixObject? •

16 (8 points). What are the values of the following expressions?

n (fixObject x)
f (fixObject x) 5
n (fixObject y)
f (fixObject y) 5
n (fixObject (x ‘extendedBy‘ y))
f (fixObject (x ‘extendedBy‘ y)) 5
f (fixObject (x ‘extendedBy‘ y ‘extendedBy‘ z)) 5
f (fixObject (x ‘extendedBy‘ y ‘extendedBy‘ z ‘extendedBy‘ z)) 5

•

5

2

17 (4 points). Define an object

zero :: Object a

such that for all types t and objects x :: Object t, the equation x ‘extendedBy‘ zero ≡
zero ‘extendedBy‘ x ≡ x hold. [No proof required, just the definition.] •

A more interesting use for these functional objects is for adding effects to functional
programs in an aspect-oriented way.

In order to keep a function extensible, we write it as an object, and keep the result
value monadic:

fac :: Monad m⇒ Object (Int→ m Int)
fac super this n =

case n of
0 → return 1
n→ liftM (n∗) (this (n− 1))

Note that recursive calls have been replaced by calls to this. We can now write a separate
aspect that counts the number of recursive calls:

calls :: MonadState Int m⇒ Object (a→ m b)
calls super this n =

do
modify (+1)
super n

We can now run the factorial function in different ways:

runIdentity (fixObject fac 5) ≡ 120
runState (fixObject (fac ‘extendedBy‘ calls) 5) 0 ≡ (120, 6)

18 (8 points). Write an aspect trace that makes use of a writer monad to record whenever
a recursive call is entered and whenever it returns. Also give a type signature with the
most general type. Use a list of type

data Step a b = Enter a
| Return b

deriving Show

to record the log. As an example, the call

runWriter (fixObject (fac ‘extendedBy‘ trace) 3)

yields

(6, [Enter 3, Enter 2, Enter 1, Enter 0, Return 1, Return 1, Return 2, Return 6])

•

6

2

