
ST Master Course on Advanced Functional Programming
Wednesday, April 18, 2007 (9:00-12:00)

This exam consists of 5 open questions: the maximum number of points for each question is given
(100 points in total, plus an additional 5 bonus points). Give short and precise answers. If a
Haskell function is asked for, try to find an elegant solution. It is recommended to read all parts of
a question before you provide an answer. You may consult course material during the test. Good
luck!

1 Laziness and Strictness (10 points)

Let prime1000 be a computation that yields the 1000th prime number (a value of type Int).
Obviously, evaluating prime1000 takes some time. Furthermore, we define a helper data type
with strictness annotations:

data X = X !Int !Bool

Suppose that we want to evaluate the following expressions. Indicate for each expression whether
prime1000 is not evaluated at all, or that prime1000 has to be fully evaluated.

a) let f (a, b) = a in f (True, prime1000)

b) let f [x] = True in f [prime1000]

c) let f (X a b) = b in f (X prime1000 True)

d) let f ∼(X a b) = b in f (X (prime1000 + prime1000) True)

e) let f xs@(:) = length xs in f (X (prime1000 + prime1000) True : [])

2 Tracing Arithmetic Expressions (20 points)

We will use the Kleisli arrow to trace the evaluation of simple arithmetic expressions. We begin
with an example trace:

*Main> runTerm $ (3 + 4) * (2 + input)
3 + 4 = 7
? 1
2 + 1 = 3
7 * 3 = 21
result: 21

The variable input will prompt the user to enter a value: in the given example trace, the user
provided the value 1 (third line). Each step in the evaluation of the term is reported, and so is the
final result. The definition of the Kleisli arrow and the class declaration for Arrow (that comes
with ghc-6.6) can be found below:

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

newtype Kleisli m a b = Kleisli{runKleisli :: a → m b}

class Arrow a where
arr :: (b → c)→ a b c
pure :: (b → c)→ a b c
(>>>) :: a b c → a c d → a b d
first :: a b c → a (b, d) (c, d)
second :: a b c → a (d , b) (d , c)
(∗∗∗) :: a b c → a b′ c′ → a (b, b′) (c, c′)
(&&&) :: a b c → a b c′ → a b (c, c′)

We first define a type synonym for the arithmetic expressions that we want to trace:

type Term = Kleisli IO () Integer

The side-effects take place in the IO monad, the term does not depend on any input (hence the
type ()), and the output is of type Integer .

a) Define the function con that turns an Integer into a Term (without any side-effect taking
place):

con :: Integer → Term

b) Define the function input that asks the user for some input:

input :: Term

You may want to use getLine :: IO String for this.

c) Next, we will define some binary operators to combine two values. First, we introduce a
type synonym for binary operators:

type BinOp = Kleisli IO (Integer , Integer) Integer

Define binary operators for addition and multiplication:

plus, times :: BinOp

Besides delivering a value, these two operators will have a side-effect: a simple equation
reports the two operands, the operator, and the result to the user.

d) Implement the function apply that takes a binary operator and two operands and yields a
new Term:

apply :: BinOp → Term → Term → Term

e) With the definitions of con, apply , plus, and times available, we make Term an instance of
the Num type class:

instance Eq Term
instance Show Term

instance Num Term where
fromInteger = con
(+) = apply plus
(∗) = apply times

The instance declarations above are only defined for syntactic convenience. However, these
declarations do not conform to the Haskell 98 standard (but with -fglasgow-exts enabled,
they are accepted). Why do they violate the Haskell 98 standard?

f) Define the function runTerm that runs the Kleisli arrow and reports the final result:

runTerm :: Term → IO ()

2
2

3 Success or Failure? (25 points)

With the data type Step we can encode success, failure, and a sequence of success/failure steps:

data Step a = Success a | Fail | Steps [Step a]

a) Make Step an instance of the Functor type class. This type class is defined in the standard
Prelude by:

class Functor f where
fmap :: (a → b)→ f a → f b

b) Write the monadic join function for the Step data type:

join :: Step (Step a)→ Step a

c) Turn the Step data type into a Monad . Your instance declaration should respect the three
monad laws (but you don’t have to prove this).

d) With Step being a Monad , we can now use Haskell’s do notation:

m :: Step (Int , Int)
m = do a ← Success 1

b ← Steps [Fail ,Success 2]
return (a, b)

Give the value of m in terms of the three constructor functions of Step.

e) The following law should hold for the Step monad (we use fmap for the monadic map to
avoid confusion with the specialized implementation for lists from the Prelude):

fmap f ◦ fmap g ≡ fmap (f ◦ g)

Prove that the instance declaration you provided for a) respects this law. (If the law is
violated, then change your instance declaration.)

f) We want a Polish (linear) representation for the data types Step, list, and Int . The following
Polish type definitions are given:

data StepP a c = ...
data ListP a c = ConsP (a (ListP a c)) | NilP c
data IntP c = IntP Int c

type StepIntP = StepP IntP

The extra type argument c is the continuation (or the “future”). Complete the definition
for StepP , which should still have three constructor functions.

g) Give kind signatures for StepP , ListP , and IntP .

h) Consider the following definition:

steps :: Step Int
steps = Steps [Success 1,Steps [Fail ,Success 2]]

Define the value stepsP :: StepIntP () which is the Polish representation of steps.

i) (Bonus: 5 points) Implement the function

collectInts :: StepIntP c → ([Int], c)

which collects all values of type Int and returns these in a list paired with the rest of the
continuation.

3
2

singleL singleR

t1 + t2 t3 =

t3

t1 t2 t1 t2 + t3 = t3

t1

t2

doubleL doubleR

t1 +

t4

t2 t3 = t4t1 t2 t3

t3

t1 t2 + t4 = t4t1 t2 t3

Figure 1: Four rotation functions

4 Balanced Trees (25 points)

We use the following data type for balanced trees:

data Tree a = Bin !Int (Tree a) (Tree a) | Leaf a

In the implementation we respect the following two invariants:

• At each Bin constructor, we store the number of values in the two subtrees. Values are only
stored in the leafs.

• All trees that we construct are balanced. We say that a tree is balanced if (and only if) for
each internal node it holds that

size l 6 size r ∗ 2 ∧ size r 6 size l ∗ 2

where l and r are the node’s two subtrees, and size returns the number of values stored in
a tree.

The relative order in which the values of a tree are stored is considered to be relevant: values
and/or subtrees are not supposed to be swapped.

a) Define the function

size :: Tree a → Int

that returns the number of values stored in a tree. This should be a constant time operation.

b) We need four rotation functions to keep our trees balanced: these functions are depicted in
Figure 1. All these functions take two balanced trees and return a balanced tree. Although
the shape changes, observe that the relative order of the values does not change. Define the
four rotation functions:

singleL, singleR, doubleL, doubleR :: Tree a → Tree a → Tree a

Hint: To make sure that the tree that is returned by a rotation function is balanced, you
may already use the smart constructor bin which we will define next.

4
2

c) Define the smart constructor bin that combines two (balanced) trees.

bin :: Tree a → Tree a → Tree a

Hint: Consider five possible scenarios. Either the two trees can be combined without any
rotation, or one of the four rotation functions should be used. It is not a problem if the
smart constructor and the rotation functions are mutually recursive.

d) For the last part we use QuickCheck to validate our implementation. Make the Tree data
type an instance of the Arbitrary type class (provided that we also have an Arbitrary instance
for the type of the elements in the tree). Also define the coarbitrary member function. All
trees that are randomly generated should respect the two invariants. Make sure that the
generation of random trees terminates.

e) Write QuickCheck properties for the two invariants of the Tree data type. Also write a
function

checkAll :: IO ()

that quickly checks all properties you have defined.

5
2

5 Counters in wxHaskell (20 points)

We will program a wxHaskell application that contains two counters: the first counter has a value
of type Int , the second a value of type Char . Each counter comes with an increment button, a
decrement button, and a reset button. The intended layout of the application is shown below:

The following data type is used for implementing a counter:

data ValueDisplay a = VD (StaticText ()) (IORef a)

A ValueDisplay consists of a widget displaying the value (we use StaticText for this) and a mutable
reference holding the current value.

a) Implement a function that takes a parent window and an initial value and constructs a
ValueDisplay . This function should have the following type:

valueDisplay :: Show a ⇒Window w → a → IO (ValueDisplay a)

b) Write a function for changing the value of a ValueDisplay :

changeValue :: Show a ⇒ ValueDisplay a → (a → a)→ IO ()

Of course, any update must be reflected in the StaticText widget.

c) The following type class is defined in the wxHaskell library:

class Widget w where
widget :: w → Layout

Make ValueDisplay an instance of the Widget type class.

d) The function displayPanel constructs several widgets that are part of a counter:

displayPanel :: (Enum a,Show a)⇒Window w → a → IO (Panel ())

This function takes a parent window and an initial value for the counter, and then constructs
and returns a new panel. This panel should contain three buttons (increment, decrement,
and reset) as well as a ValueDisplay . Define displayPanel : also implement the event handlers
of the buttons and the panel’s layout. Note that we use the Enum type class for incrementing
and decrementing the value.

e) Implement the function main :: IO () to start the GUI. The application should have a title
and two counters that are initially set to 0 and ’A’, as suggested by the screenshot above.

6
2

