
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Exam

Andres Löh

Wednesday, 3 February 2010, 09:00–12:00

Preliminaries

• The exam consists of 4 pages (including this page). Please verify that you got all the
pages.

• Write your name and student number on all submitted work. Also include the total
number of separate sheets of paper.

• For each task, the maximum score is stated. The total amount of points you can get
is 100.

• Try to give simple and concise answers. Write readable. Do not use pencils or pens
with red ink.

• You may answer questions in Dutch or English.

• When writing Haskell code, you may use Prelude functions and functions from the
Data.List, Data.Maybe, Data.Map, Control.Monad modules. Also, you may use all the
parser combinators from the uu-tc package. If in doubt whether a certain function is
allowed, please ask.

Good luck!

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

DFAs

1 (10 points). Consider the following Haskell lexer:

lex, lex0, lex1, lex2, lex3 :: String→ Bool
lex = lex0

lex0 (’1’ : xs) = lex1 xs
lex0 (’0’ : xs) = lex2 xs
lex0 = False
lex1 (’0’ : xs) = lex1 xs
lex1 (’1’ : xs) = lex1 xs
lex1 (’.’ : xs) = lex3 xs
lex1 = False
lex2 (’.’ : xs) = lex3 xs
lex2 = False
lex3 (’0’ : xs) = lex3 xs
lex3 (’1’ : xs) = lex3 xs
lex3 [] = True
lex3 = False

Give a deterministic finite state automaton that accepts the same language as the Haskell
code. •

Consider the following nondeterministic finite state automaton:

Sstart A

B

C

a

a
a b

a b

2 (4 points). Give two different words of length at least 5 that are accepted by the automa-
ton. •

3 (10 points). Transform the automaton given above into an equivalent deterministic finite-
state automaton. It is not necessary to include any unreachable states, but the correspon-
dence with the original automaton should be made obvious, for example by using the
standard construction and naming nodes adequately. •

Regular expressions

Consider the following Haskell datatype that describes regular expressions over an alpha-
bet type s:

2

2

data Regex s = Empty
| Epsilon
| Const s
| Sequ (Regex s) (Regex s)
| Plus (Regex s) (Regex s)
| Star (Regex s)

4 (4 points). Translate the regular expression

(aa+ b)∗

into a value of type Regex Char. •

5 (10 points). Define a function

regexParser :: Eq s⇒ Regex s→ Parser s [s]

using the parser combinators such that regexParser r is a parser for the language described
by the regular expression r. The parser should return the list of symbols recognized. •

6 (10 points). Define an algebra type RegexAlgebra and a fold function foldRegex for the
Regex type. (Note that regexParser could be written as a call to foldRegex. It is, however, not
part of the task to do so.) •

Regular vs. context-free

7 (10 points). Consider the language described by the following grammar with start sym-
bol S:

S → aSa | B
B→ b | bB

(a) Give a characterization of the words that belong to the language.

(b) Is the language regular? If yes, give a regular expression that describes the language.
If not, use the pumping lemma to prove that the language cannot be regular. •

8 (10 points). Consider the language over alphabet A = {a, b} that contains all words with
at least three ‘b’s.

(a) Give a context-free grammar for the language.

(b) Is the language regular? If yes, give a regular expression that describes the language.
If not, use the pumping lemma to prove that the language cannot be regular. •

9 (6 points). Let L be a language that is context-free, but not regular. Is it possible that the
complement of L is regular? Explain your answer. •

3

2

LL and LR parsing

Consider the following grammar, with start symbol S:

S → OSS |V
O→ + | ε
V → 1 | x

10 (8 points). Compute the empty property, the first and follow sets for all nonterminals. Is
the grammar LL(1)? •

We augment the grammar above in preparation for LR parsing:

S′ → S$

and S′ becomes the new start symbol.
The LR(0) automaton corresponding to the full grammar looks as follows (each state is

only labelled by its kernel items, and numbered before the production for future reference):

(0) S′ → •S$start

(1) V → 1• (2) V → x• (3) O→ +•

(4) S→ O•SS (5) S→ OS•S

(6) S→ OSS•(7) S→ V•(8) S′ → S•$

1 x
+

S

O

V
V

V

S

O

O

S

1

x

+
1

x +

11 (6 points). Classify each state as a shift state, reduce state, or shift-reduce conflict state.
Note that you may have to compute the closure of the item sets to determine that. Also
mark potential reduce-reduce conflicts. Would applying SLR(1) parsing help to resolve the
potential conflicts? •

12 (6 points). Play through the LR parsing process (no extras, neither SLR nor LALR) for
the word +11. Resolve potential shift-reduce conflicts by always choosing to shift, and
potential reduce-reduce conflicts by picking any of the available reduction. •

13 (6 points). Are there words in the language that cannot be parsed successfully using the
simplistic strategy from the previous task? If so, give an example. •

14 (meta question). How many out of the 100 possible points do you think you will get for
this exam? •

4

2

