- WADRAAT.
, R-BE-JBC-NVANA=ESK
S IN ELEKTRONISCHE VORM BESCHIKBAAR GEMAAKT DOO! OLG;% VAN BVENTUBLE poan
DI TENTAMEN | IET AANSPRAKELIJK WORDEN GESTELD VOOR DE GEV

N
A—-ESKWADRAAT KAN

F IN DIT TENTAMEN.

Department of Information and Computing Sciences
Utrecht University

INFOB3TC- Exam 2

Sean Leather

Monday, 30 January 2012, 17:00 - 20:00

1 Preliminaries

* The exam consists of § pages (including this page). Please verify that you received
all pages.

* Write your name and student number on a]] submitted work. Also include the
total number of Separate sheets of paper.

* Give simple and concise answers. Write readable text. Do not use pencils or pens
with red ink.

* Write your text in English.

e When writing grammar and language constructs, you may use any set, sequence,
or language operations covered during the course.

°
&
4]
e
Q
(=
=
o
=
[¢°]
1]
=
2]
[}
=3
fauc
~<
—
o]
Q
=
@]
<
]
~
=
&
¢
[Ka)
c
[1°]
17
g
@]
3
NG
o
3
Q.
i}
=
7]
3
)
—
o
(927
o]
3
1
®
e
Q
[=

know first.

IMPORTANT! Generally, you are allowed to take the resit exam if you have at least
an average score of 4 on the exams. However, you can also take the resit if you do not
submit this exam.

to “cancel” your submission, send an email to leather@cs.uy.nl by 14:00 tomorrow (Tues-
day, 31 January 2012) indicating this.

Good Tuck!



2 Questions

2.1 Regular Languages

1 (545 points). Consider the following regular grammars for languages [ and La:

L;: §-»abcdS
Ly S—SAle
A — abcd | dcba

(a) Give a regular expression for each language.

(b) Define a parser for each regular expression using the Haskell Regex combinator
library described in Section 3.1. The parsers should produce an appropriate rep-
resentation of the input.

2 (15+15 points). For each language definition below, show whether or not the language
is regular. If itis regular, give one of the following:

(a) aregular grammar in an acceptable form,
(b) aregular expression, of

(c) a finite state automaton.

If the language is not regular, prove that using the pumping lemma for regular lan-
guages.

(@) {omp" |n=m+1}

(b) {37%]j>2k<5}




2.2 Simple Stack Machine

3 (15 points). Translate this program into SSM instructions. See the SSM instruction set
reference in Section 3.2.

void main() {
int x = fib(4);
fib(x);

}

int fib(int n) {
if (n < 2)
return 1;
else
return fib(n - 1) + fib(n - 2);

4 (10 points). Given the initial SSM register state below, show the final (relative) state
after the above instructions have been executed (and just before the program finishes).
You may assume that the code and stack memory do not share address space.

Register Initial Value Description of Initial Value

PC i First instruction address
SP s Current head of stack
MP m Unknown

RR r Unknown




2.3 LL Parsing

5 (30 points). Copy the table below and complete it by computing the values in the
columns for the appropriate rows. Use True and False for property values and set nota-
tion for everything else.

NT Production | empty emptyRhs  first firstRhs  follow lookAhead
M
M — <E>M
M—e
E
E—-Q
E— Q;E
Q
Q-0
Q—1
QM

[)

6 (15 points). Is the above grammar LL(1)? Explain how you arrived at your answer.
If the grammar is not LI(1), transform the grammar such that is LL(1) and complete a
new table with only the rows that differ from the old table. .

7 (15 points). Show the steps that a parser for the above LL(1) grammar (after transfor-
mation if necessary) goes through to recognize the following input sequence:
<0;<1>>

For each step (one per line), show the stack, the remaining input, and the action (fol-
lowed by the relevant symbol or production) performed. If you reach a step in which
you cannot proceed, note the action as “error.” )



2.4 LR Parsing

8 (25 points). Copy the table below and complete it by computing the values in the
columns for the appropriate rows. Where the label “(set)” is given, use set notation.
Where “(RE)” is given, use regular expression notation. A set may reference other sets —
using [X] as the notation for the left context set of X - but a regular expression must not
reference other regular expressions.

NT Production | Left Context (set) Left Context (RE) LR(0) Context (RE)

S

S — As
A

A — A%B

A—B
B

B—b

B — aA

9 (15 points). Is the above grammar LR(0)? Explain how you arrived at your answer.
If the grammar is not LR(0), transform the grammar such that is LR(0) and complete a
new table with only the rows that differ from the old table. o

10 (15 points). Construct the deterministic LR(0) automaton (characteristic machine)
for the above LR(0) grammar (after transformation if necessary). Clearly label the start
state, transitions, and accepting states. )

11 (15 points). Show the steps that a parser for the above LR(0) grammar (after trans-
formation if necessary) goes through to recognize the following input sequence:

ab%abas

For each step (one per line), show the stack, the remaining input, and the action (fol-
lowed by the relevant symbol or production) performed. If you reach a step in which
you cannot proceed, note the action as “error.”

Note: You may use either symbols alone or symbols along with states from your DFA
above, as you like. o



3 Appendix

3.1 Regular Expression Combinators

The following is the interface to a small regular expression parser combinator library.
It centers around the abstract Regex datatype. The combinators are built from standard
Haskell library type classes: Functor, Applicative, and Alternative. The semantics of each
function should be clear from its name, type, and your experience with similar parser
combinator libraries.

data Regexsa=...

instance Functor (Regex s) where. ..
instance Applicative (Regex s) where ...
instance Alternative (Regex s) where ...

class (Functor f) = Applicative f where
pure :a—fa
(<) nfa—b)—>fa—fb
(x>) ufa—fb—fb
(<x) ufa—fb—fa
class (Applicative f) = Alternative f where
empty :f a
(<|>)ufa—fa—fa
some :fa-— f|a]
many ::f a — f 4]

satisfy :: (s — Bool) — Regexss
symbol :: (Eq s) = s — Regex s s
run i Regexsa — [s] — Maybea



3.2 SSM Reference

SSM instructions are given in textual form, called assembler notation. For this exam, a
program is a sequence of instructions with each instruction on a separate line, option-
ally proceed by a label and a colon (e.g. main:). A label (e.g. main) may be used as an
argument to an instruction.

Copying Instructions

Instructions Description

ldc Load a constant

lds Load a value relative to the SP

1dh Load a value relative to the HP

1dl Load a value relative to the MP

lda Load a value pointed to by the value on top of the stack
ldr Load a register value

ldrr Load a register with a value from another register

ldsa Load address of value relative to the SP

ldla Load address of value relative to the MP

ldaa Load address of value relative to the address on top of the stack
sts Store a value relative to the SP

sth Store a value relative to the HP

stl Store a value relative to the MP

sta Store a value pointed to by a value on the stack

str Store a value in a register

Convenience Instructions For the Stack

Instructions Description

ajs Adjust the SP

link Save the MP, adjust the MP and SP suitable for programming
language function entry

unlink Reverse of link




Arithmetic Instructions

Instructions Description

add, sub, mul, Binary operations
div, mod, neg,
and, ox, xor

not Unary operation

cmp Put an int value on the stack which is interpreted as a status
register value containing condition code to be used by a branch
instruction

eq, ne, 1t, gt, le, Puttrue value on the stack if comparison is true
ge

Control Instructions

Instructions Description

beq, bne, blt, Branch on equality, unequality, less than, greater than, less or

bgt, ble, bge equal, greater or equal. These instructions pop the stack, inter-
pret it as a condition code and jump accordingly

bra Branch always, no popping of the stack

brf (brt) Branch if top of stack is false (true)

bsr Branch to subroutine. Like bra, but pushes the previous PC be-
fore jumping

jsr Jump to subroutine. Like bsr, but pops its destination from the
stack




