
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 2

Sean Leather

Monday, 30 January 2012, 17:00 – 20:00

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

1 Questions

1.1 Regular Languages

1 (5+5 points). Consider the grammars for the regular languages L1 and L2:

L1: S→ ab | cdS
L2: S→ S A | ε

A→ abcd | dcba

(a) Give a regular expression for each language.

(b) Define a parser for each regular expression using the Haskell Regex combinator
library described in Section 2.1. The parsers should produce an appropriate rep-
resentation of the input.

•

Solution 1.

(a) The regular expressions:

L1: (cd)∗ab
L2: (abcd+ dcba)∗

1

(b) The parsers:

l1 = (, ,)<$> many ((,)<$> symbol ’c’<∗> symbol ’d’)
<∗> symbol ’a’
<∗> symbol ’b’

l2 = many (r ’a’ ’b’ ’c’ ’d’<|> r ’d’ ’c’ ’b’ ’a’)
where r w x y z = f <$> s w <∗> s x <∗> s y <∗> s z

f a b c d = [a, b, c, d]
s = symbol

◦
2 (15+15 points). For each language definition below, show whether or not the language
is regular. If it is regular, give one of the following:

(a) a regular grammar in an acceptable form,

(b) a regular expression, or

(c) a finite state automaton.

If the language is not regular, prove that using the pumping lemma for regular lan-
guages.

(a) {ompn | n = m + 1}

(b) {3j7k | j > 2, k < 5}

•
Solution 2.

(a) The language L = {ompn | n = m + 1} is not regular. To prove it, we must assume
it is regular and find a contradiction with the pumping lemma.

Let x = ε, y = om, z = pm+1.

Then, xyz = ompm+1 ∈ L and |y| > m.

From the pumping lemma, we know there must be a loop in y, i.e. y = uvw with
q = |v |>0 such that xuviwz ∈ L for all i ∈N.

Let i = 2. We expect xuv2wz ∈ L. If u = os, v = oq, w = or, then we expect
oso2 qorpm+1 ∈ L. But it does not, because s + 2 q + r > m Therefore, L is not
regular.

(b) Two possible options:

333+(ε + 7+ 77+ 777+ 7777)
333+7?7?7?7?

◦

2

1.2 Simple Stack Machine

3 (15 points). Translate this program into SSM instructions. See the SSM instruction set
reference in Section 2.2.

void main() {

int x = fib(4);

fib(x);

}

int fib(int n) {

if (n < 2)

return 1;

else

return fib(n - 1) + fib(n - 2);

}

•

Solution 3.

bsr main

halt

main: link 1 ; int x

ldc 4

bsr fib ; fib(4)

stl 1

bsr fib ; fib(x)

unlink

sts -1

ret

fib: ldl -2 ; if (n < 2)

ldc 2

lt

brt true

false: ldl -2 ; else ... fib(n-1)

ldc 1

sub

bsr fib

ldl -2 ; fib(n-2)

ldc 2

sub

bsr fib

add ; return fib(n-1) + fib(n-2)

bra cont

3

true: ldc 1 ; return 1

cont: ret

◦

4 (10 points). Given the initial SSM register state below, show the final (relative) state
after the above instructions have been executed (and just before the program finishes).
You may assume that the code and stack memory do not share address space.

Register Initial Value Description of Initial Value

PC i First instruction address
SP s Current head of stack
MP m Unknown
RR r Unknown

•

Solution 4.

Register Value Note

PC i + 2 After bsr
SP s Back to head of stack
MP m Unchanged
RR r Unchanged

◦

1.3 LL Parsing

5 (30 points). Copy the table below and complete it by computing the values in the
columns for the appropriate rows. Use True and False for property values and set nota-
tion for everything else.

NT Production empty emptyRhs first firstRhs follow lookAhead

M
M→ <E>M
M→ ε

E
E→ Q
E→ Q;E

Q
Q→ 0

Q→ 1

Q→ M
•

4

Solution 5.

NT Production empty emptyRhs first firstRhs follow lookAhead

M True {<} {;, >}
M→ <E>M False {<} {<}
M→ ε True { } {;, >}

E True {0, 1, <} {>}
E→ Q True {0, 1, <} {0, 1, <, >}
E→ Q;E False {0, 1, <, ;} {0, 1, <}

Q True {0, 1, <} {;, >}
Q→ 0 False {0} {0}
Q→ 1 False {1} {1}
Q→ M True {<} {<, ;, >}

◦

6 (15 points). Is the above grammar LL(1)? Explain how you arrived at your answer.
If the grammar is not LL(1), transform the grammar such that is LL(1) and complete a
new table with only the rows that differ from the old table. •

Solution 6.
The above grammar is not LL(1) because the lookAhead sets of the E productions have

a non-empty intersection. To make this grammar LL(1), we only need to left-factor E.

NT Production empty emptyRhs first firstRhs follow lookAhead

E→ QF True {0, 1, <} {0, 1, <, >}
F True {;} {>}

F→ ;E False {;} {;}
F→ ε True { } {>}

◦

7 (15 points). Show the steps that a parser for the above LL(1) grammar (after transfor-
mation if necessary) goes through to recognize the following input sequence:

<0;<1>>

For each step (one per line), show the stack, the remaining input, and the action (fol-
lowed by the relevant symbol or production) performed. If you reach a step in which
you cannot proceed, note the action as “error.“ •

Solution 7.

5

stack input action
M <0;<1>> initial state

<E>M <0;<1>> expand M
E>M 0;<1>> match <

QF>M 0;<1>> expand E
0F>M 0;<1>> expand Q

F>M ;<1>> match 0

;E>M ;<1>> expand F
E>M <1>> match ;

QF>M <1>> expand E
MF>M <1>> expand Q

<E>MF>M <1>> expand M
E>MF>M 1>> match <

QF>MF>M 1>> expand E
1F>MF>M 1>> expand Q

F>MF>M >> match 1

>MF>M >> expand F
MF>M > match >

F>M > expand M
>M > expand F

M ε match >

ε ε expand M

◦

1.4 LR Parsing

8 (25 points). Copy the table below and complete it by computing the values in the
columns for the appropriate rows. Where the label “(set)” is given, use set notation.
Where “(RE)” is given, use regular expression notation. A set may reference other sets –
using [X] as the notation for the left context set of X – but a regular expression must not
reference other regular expressions.

NT Production Left Context (set) Left Context (RE) LR(0) Context (RE)

S
S→ As

A
A→ A%B
A→ B

B
B→ b

B→ aA
•

Solution 8.

6

NT Production Left Context (set) Left Context (RE) LR(0) Context (RE)

Z {ε} ε
Z→ S$ S$

S [Z] ε
S→ As As

A [S] ∪ [A] ∪ [B] · {a} ((A%)?a)∗

A→ A%B ((A%)?a)∗A %B
A→ B ((A%)?a)∗B

B [A] ∪ [A] · {A%} ((A%)?a)∗(A%)?
B→ b ((A%)?a)∗(A%)?b
B→ aA ((A%)?a)∗(A%)?aA

◦

9 (15 points). Is the above grammar LR(0)? Explain how you arrived at your answer.
If the grammar is not LR(0), transform the grammar such that is LR(0) and complete a
new table with only the rows that differ from the old table. •

Solution 9. The above grammar is LR(0) because it satisfies the LR(0) condition, i.e. no
LR(0) context is a prefix of another context. Therefore, we do not need to transform the
grammar. ◦

10 (15 points). Construct the deterministic LR(0) automaton (characteristic machine)
for the above LR(0) grammar (after transformation if necessary). Clearly label the start
state, transitions, and accepting states. •

Solution 10.

Z→ S$

A→ Bstart

B→ bB→ aA

A→ A%BS→ As

a S

$

B

b
A

%

B

s

◦

7

11 (15 points). Show the steps that a parser for the above LR(0) grammar (after trans-
formation if necessary) goes through to recognize the following input sequence:

ab%abas

For each step (one per line), show the stack, the remaining input, and the action (fol-
lowed by the relevant symbol or production) performed. If you reach a step in which
you cannot proceed, note the action as “error.“

Note: You may use either symbols alone or symbols along with states from your DFA
above, as you like. •

Solution 11.

stack input action
ε ab%abas$ initial state
a b%abas$ shift a
ab %abas$ shift b
aB %abas$ reduce B→ b

aA %abas$ reduce A→ B
B %abas$ reduce B→ aA
A %abas$ reduce A→ B
A% abas$ shift %
A%a bas$ shift a
A%ab as$ shift b
A%aB as$ reduce B→ b

A%aA as$ reduce A→ B
A%B as$ reduce B→ aA
A as$ reduce A→ A%B
Aa s$ shift a
Aa s$ error

◦

2 Appendix

2.1 Regular Expression Combinators

The following is the interface to a small regular expression parser combinator library.
It centers around the abstract Regex datatype. The combinators are built from standard
Haskell library type classes: Functor, Applicative, and Alternative. The semantics of each
function should be clear from its name, type, and your experience with similar parser
combinator libraries.

data Regex s a = . . .
instance Functor (Regex s) where . . .
instance Applicative (Regex s) where . . .
instance Alternative (Regex s) where . . .

8

class (Functor f)⇒ Applicative f where
pure :: a→ f a
(<∗>) :: f (a→ b)→ f a→ f b
(∗>) :: f a→ f b→ f b
(<∗) :: f a→ f b→ f a

class (Applicative f)⇒ Alternative f where
empty :: f a
(<|>) :: f a→ f a→ f a
some :: f a→ f [a]
many :: f a→ f [a]

satisfy :: (s→ Bool)→ Regex s s
symbol :: (Eq s)⇒ s→ Regex s s
run :: Regex s a→ [s]→ Maybe a

2.2 SSM Reference

SSM instructions are given in textual form, called assembler notation. For this exam, a
program is a sequence of instructions with each instruction on a separate line, option-
ally proceed by a label and a colon (e.g. main:). A label (e.g. main) may be used as an
argument to an instruction.

Copying Instructions

Instructions Description

ldc Load a constant
lds Load a value relative to the SP
ldh Load a value relative to the HP
ldl Load a value relative to the MP
lda Load a value pointed to by the value on top of the stack
ldr Load a register value
ldrr Load a register with a value from another register
ldsa Load address of value relative to the SP
ldla Load address of value relative to the MP
ldaa Load address of value relative to the address on top of the stack
sts Store a value relative to the SP
sth Store a value relative to the HP
stl Store a value relative to the MP
sta Store a value pointed to by a value on the stack
str Store a value in a register

9

Convenience Instructions For the Stack

Instructions Description

ajs Adjust the SP
link Save the MP, adjust the MP and SP suitable for programming

language function entry
unlink Reverse of link

Arithmetic Instructions

Instructions Description

add, sub, mul,
div, mod, neg,
and, or, xor

Binary operations

not Unary operation
cmp Put an int value on the stack which is interpreted as a status

register value containing condition code to be used by a branch
instruction

eq, ne, lt, gt, le,
ge

Put true value on the stack if comparison is true

Control Instructions

Instructions Description

beq, bne, blt,
bgt, ble, bge

Branch on equality, unequality, less than, greater than, less or
equal, greater or equal. These instructions pop the stack, inter-
pret it as a condition code and jump accordingly

bra Branch always, no popping of the stack
brf (brt) Branch if top of stack is false (true)
bsr Branch to subroutine. Like bra, but pushes the previous PC be-

fore jumping
jsr Jump to subroutine. Like bsr, but pops its destination from the

stack
ret Return from subroutine. Pops a previously pushed PC from the

stack and jumps to it
halt Halt execution

10

	Questions
	Regular Languages
	Simple Stack Machine
	LL Parsing
	LR Parsing

	Appendix
	Regular Expression Combinators
	SSM Reference

