DIT TENTAMEN IS IN ELEKTRONISCHE VORM BESCHIKBAAR GEMAAKT DOOR DE 7[36 VAN A—ESKWADRAAT.
A—-ESKWADRAAT KAN NIET AANSPRAKELIJK WORDEN GESTELD VOOR DE GEVOLGEN VAN EVENTUELE FOUTEN

IN DIT TENTAMEN.

Department of Information and Computing Sciences
Utrecht University

INFOB3TC — Exam 3

Sean Leather

Monday, 12 March 2012, 14:00 - 17:00

1 Preliminaries

o The exam consists of 4 pages (including this page). Please verify that you received
all pages.

» Write your name and student number on all submitted work. Also include the
total number of separate sheets of paper.

e The maximum score is stated at the top of each question. The total amount of
points you can get is 100.

¢ Give simple and concise answers. Write readable text. Do not use pencils or pens
with red ink.

o Write your text in English.

* When writing grammar and language constructs, you may use any set, sequence,
or language operation covered during the course.

* When writing Haskell code, you may use functions from the Prelude and the fol-
lowing modules: Data.Char, Data.List, Data.Maybe, and Control.Applicative. If you
are in doubt whether a certain function is allowed, please ask.

o Use your time efficiently. Look over all the questions, and answer the ones you
know first.

Good luck!

2 Questions

2.1 Grammar Transformation

1 (20 points). Consider the following grammar over the alphabet {m,n,8, #,@ }:

S > m8P|m8PS
P - PQ#|n
Q—@P

Transform this into a minimal grammar from which we can immediately derive the
simplest and most efficient parser. You may use any of the following transformations:

Inline nonterminal Remove duplicate productions
Introduce nonterminal Remove left-recursion

Introduce -* Remove unreachable production
Introduce -+ Left-factoring

Introduce -?

2.2 Regular Languages
2 (20 points). Consider the following nondeterministic finite state automaton (NFA):

b
start e e

(D

(a) Construct a deterministic finite state automaton (DFA) from the NFA.

(b) Give a regular grammar for the DFA.

2.3 LL Parsing

3 (20 points). Consider the grammar in the table below:

NT Production | empty emptyRhs first firstRhs follow lookAhead

S

S—1B9
B

B—-2C
C

C— B3

C—o5

(a) Complete the table by computing the values in the columns for the appropriate
rows. Use True and False for property values and set notation for everything else.

(b) Is the grammar LL(1)? Explain how you arrived at your answer. If it is is not,
transform the grammar so that it is LL(1). Give the rows of the table that differ.
You don’t need to write the whole table again.

2.4 Parser Combinators

4 (20 points). The following grammar describes JSON, the JavaScript Object Notation,
a data-interchange format.

Object — {} | { Members}
Members — Pair | Pair , Members

Pair — String : Value
Value — String | Number | Object | Array | true | false | null
Array — [] | [Elements]

Elements — Value | Value , Elements

For String and Number, you may assume the standard Haskell String and Double formats
and values.

(a) Give an abstract syntax for the grammar using a family of Haskell datatypes.

(b) Define parsers for the datatypes using the parser combinators covered in the
course.

(c) Define the algebra type and fold functions for the datatypes.

2.5 Context-Free Grammars

5 (20 points). Consider the following grammar G over the alphabet {0,3,b,[,]}:

S —o0]oo|[T]
R—alb
T — ¢|RRT
(a) Is the grammar context-free? Regular? Why?
(b) Give the language L(G) of the grammar G without referring to G itself.

(c) Is the language L(G) context-free? Regular? Why?

