Department of Information and Computing Sciences
Utrecht University

INFOB3TC — Solutions for Exam 1

Johan Jeuring

Wednesday, 16 December 2015, 08:30-10:30

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Questions

NinjaPoke studios sells a Unity asset called ’Dialogueﬂ for five dollars.

eoo NinjaPoke Studios 7: Gatekeeper: Who dares step foot through the great doors?
[Reader)] Player: {It is I, Great King Julian
Facebook _Google+ _Johan Jeuring _ maps gocglecom = &
{I come wi

{I've lost my phone

il are not King Ju
gund differer

Home About Us Games Pages

NinjaPoke Studios

Hey there :D
We're a small team of 3 that build free games of varying genres but all as awesome as each other! Have a look
‘around and chill out or visit our facebook to see the latest stuff in the works :)

Importantl: If you are using the technical preview of the new Vivaldi web browser you will not be able to play
any of our online games at this time. We suspect this is due to an incompatibility between the web browser and
the Unity Webplayer which is required to play all of the games on our site. We will continue to investigate this
issue and keep this area updated. Sorry for any inconvenience caused.

Wh ————
{Well you are
{Well I've b
{Because you have nice eyes?}

Our newest game:
Al Defence

Gatekeeper: Colds do not concern me. I do not get them.

The Dialogue asset is used for implementing dialogues in games. In this series of exer-
cises we will create part of the functionality of a slightly extended version of this asset.

Here is a simple example dialogue between a player and a friend (presumably the
player represent the person playing the dialogue, and the friend is a virtual character,
but this need not be the case):

Player: Hello!
Friend: Hi!

Player: How are you?
Friend: I’m good

Ihttps://www.assetstore.unity3d.com/

https://www.assetstore.unity3d.com/

A dialogue consists of a list of ‘stage directions’ (as NinjaPoke calls them), where each
stage direction consists of an identifier for the character making a statement (in this case
Player and Friend, but you may use any names here), followed by a colon, followed
by one or more spaces, and then a sentence. There is a newline at the end of such a
sentence.

Instead of a sentence, you can also offer a choice between various sentences, so that a
player (or anyone else) can choose between different options. Every choice has a score,
and can be followed by a different part of the dialogue. For example:

Harry: Hello!
Sally: Hi, how are you?

Harry: {I feel tired} [goto Tired] 2
{Not bad} [end]
{I’m feeling sick} [call BuyMedicine] 1
-Tired

Sally: Go to sleep then

The various options offered to Harry (in this case) are surrounded by { and }. The
options are followed by a command, which is surrounded by [and], and a score,
which is an integer. A command is either end, denoting that a dialogue ends here, a
call to a method (an identifier in our case, BuyMedicine), or a jump goto that takes a
label (Tired) as argument. Further down in the dialogue the label appears on its own
line, preceded by a - (-Tired). Below this label appears the piece of dialogue you want
to play if the player selects the option to which this goto label is connected.

1 (12 points). Give a concrete syntax (a context-free grammar) of this language for dia-
logues. You may use nonterminal Identifier to recognise a single name, String to recog-
nise the content of a sentence (a string not containing a newline or a closing curly paren-
thesis }), and Integer to recognise a score. Describe the language as precisely as possible,
but you may ignore occurrences of spaces (you may include them as well). °

Solution 1.

Dialogue — Direction™

Direction — Label | Statement

Label — "=" Identifier "\n"

Statement — Character " :" Utterance
Character — Identifier

Utterance — Sentence "\n" | Options
Sentence —» String

Options — ("{" Sentence "}" Jump Score)*
Jump — "[" Command "1"

Command — "goto" Identifier | "end" | "call" Method
Method ~ — Identifier

Score — Integer

Here is the above example sentence:

example = player1 +- friend1 H- player2 +- label H- friend?2
player] = "Player: Hello!\n"

friendl = "Friend: Hi, how are you?\n"

player2 = "Player: " H-optionl H- option2 -4 option3
option] = "{Tired} [goto Tired] 2\n"

option2 =" {Good} [end] 3\n"
option3 =" {Sick} [call BuyMedicine] 1\n"
label = "-Tired\n"

friend2 ="Friend: Go to sleep then"

Marking

e}

2 (12 points). Discuss three grammar transformations: describe in words what they do,
give an example of their application, and discuss whether or not they can be applied to
the grammar you defined in Task 1}, and, if they can be applied, what the result would
look like. o

Solution 2.

Marking

e}

3 (12 points). Define an abstract syntax (a (data) type Dialogue in Haskell) that corre-
sponds to your concrete syntax given as an answer in Task [1, which you can use to
represent a dialogue in Haskell. .

Solution 3.

type Dialogue = [Direction]

data Direction = Label Label | Statement Statement deriving Show
type Label = Identifier

type Statement = (Character, Utterance)

type Character = Identifier

data Utterance = Sentence Sentence | Options Options deriving Show
type Sentence = String

type Options = [(Sentence, Jump, Score)]

type Jump = Command

data Command = Goto Identifier | End | Call Method deriving Show
type Method = Identifier

type Score = Int

type Identifier = String

Marking

e}

4 (12 points). Define a parser pDialogue :: Parser Char Dialogue that parses sentences
from the language of dialogues. Define your parser using parser combinators. o

Solution 4.

pDialogue :: Parser Char Dialogue
pDialogue = many pDirection
pDirection :: Parser Char Direction
pDirection = Label <$> pLabel <|> Statement <$> pStatement
pLabel :: Parser Char Label
pLabel = symbol > -’ x> identifier <x symbol >\n’
pStatement :: Parser Char Statement
pStatement = (,) <$> (pCharacter <x tokensp ":") <s> pUltterance
pUtterance :: Parser Char Utterance
pUtterance = Sentence <$> pSentence <x symbol >\n’> <|> Options <$> pOptions
pOptions :: Parser Char Options
pOptions =many ((,,) <$>
(tokensp "{" x> pSentence) <x> (tokensp "}" > pJump) <x> integersp

)
pJump :: Parser Char Jump
pJump = tokensp " [x> pCommand <x tokensp "1"

pCommand :: Parser Char Command
pCommand = Goto <$> (tokensp "goto" x> identifier)
<|> End <$ token "end"
<|> Call <$> (tokensp "call" x> pMethod)
pMethod, pCharacter, pSentence :: Parser Char Identifier
pMethod = identifier

pCharacter = identifier
pSentence = greedy (satisfy (Ac — (¢ Z ’\n’) A (¢ # ’}’)))

spaces = greedy (satisfy isSpace)
tokensp s = token s <x spaces

integersp = integer < spaces

— Parser test case

test = fst $ head $ pDialogue example
Marking

Dialogues have a tree-like structure that is not directly visible in the concrete syntax,
and hence not in the derived abstract syntax given in Task]3| either. I will now define
an abstract syntax that encodes the tree-like structure. To keep things simple for the
following exercises, I assume that if there is a choice in a dialogue, there are always
exactly two options.

A value of the abstract dialogue data type (ADialogue) is either the empty dialogue
ADEnd, or it is a Single statement (a Sentence from a particular Character) followed by
a dialogue, or it is a Choice for a Character between two options, where each option
consists of a Sentence, a Score, and a dialogue that follows when the Character chooses
this option.

— Simplified abstract dialogue type in which there are never more than two choices
data ADialogue = Single Character Sentence ADialogue
| Choice Character
(Sentence, ADialogue, Score)
(Sentence, ADialogue, Score)
| ADEnd

type Character = Identifier
type Sentence = String
type Score = Int

5 (12 points). Define the algebra type, and the fold for the data type ADialogue. You may
assume that the types Sentence, Score, and Character are constant types such as Int and
String, that is, you don’t have to define a fold for these types. o

Solution 5.

type ADialogueAlgebra a = (Character — Sentence — a — a
, Character — (Sentence,a, Score) — (Sentence,a, Score) — a
,a
)

foldDialogue :: ADialogueAlgebra a — ADialogue — a

foldDialogue alg@(single, choices,end) = f where

f (Single c s a) =single cs (f a)
f (Choices ¢ (sel,al,scl) (se2,a2,sc2)) = choices ¢ (sel,f al,scl) (se2,f a2,sc2)
f ADEnd =end
Marking
(¢]
The following dialogue:

Player: Hi

Friend: How are you?

Player: {Good} [goto i0] 3
{Bad} [goto i3] 2

-i0

Friend: Good to hear

Player: {Thanks for askingl} [end] 2
{Yes, yes} [end] 1

-i3

Friend: Sad to hear

Player: {Well, what do you think?} [end] O
{Yes, but thanks for asking} [end] 1

is represented by the following value of the data type ADialogue:

exADialogue =
Single "Player" "Hi"
$ Single "Friend" "How are you?"
$ Choices "Player" ("Good",ead2,3) ("Bad",ead3,2)
ead2 =
Single "Friend" "Good to hear"
$ Choices "Player" ("Thanks for asking",ADEnd,2) ("Yes, yes",ADEnd,1)
ead3 =
Single "Friend" "Sad to hear"
$ Choices "Player" ("Well, what do you think?", ADEnd,0)
("Yes, but thanks for asking", ADEnd,1)

When a player plays this dialogue, he or she scores points at each choice. The total
score of playing a dialogue is the sum of the scores at the choices taken. For example, if
the player plays the following dialogue:

Player: Hi

Friend: How are you?
Player: Good

Friend: Good to hear
Player: Yes, yes

he or she scores 4 points in total.

6 (10 points). Define a function maxScore :: ADialogue — Score that returns the maximum
total score you can obtain in a dialogue, where a score is the sum of the scores at each
option chosen. Define maxScore using the fold on the data type ADialogue defined in
Task Bl .

Solution 6.

maxScore :: ADialogue — Score
maxScore = foldDialogue maxScoreAlg where
maxScoreAlg = (Acsd — d
,Ac (sel,al,scl) (se2,a2,sc2) — max (al + scl) (a2 + sc2)
,0
)

Marking

e}

7 (10 points). Define a function ppDialogue :: ADialogue — (Int — (String,Int)) that
prints an abstract dialogue in a way similar to how the example dialogues at the begin-
ning of this exam are presented. The value of type String in the resulting tuple is the
printed dialogue. The Int that is passed in and returned in the computation is a number
used to generate the labels for the parts of the paragraphs to which the commands in
the choices jump. Define ppDialogue using the fold on the data type ADialogue defined
in Task 5l .

Solution 7.

ppDialogue :: ADialogue — (Int — (String, Int))
ppDialogue = foldDialogue ppAlg where
ppAlg = (Acsd — Ai — let (s1,il) =diin (cH": " +H s+ "\n" +H5s1,il)
,Ac (sel,al,scl) (se2,a2,sc2) — Ai —
let (s1,i1)=al (i+1)
(s2,i2) =a2 (i1+1)
cl =ifil==i41
then "[end] " -+ show sc1 H "\n"
else "[goto i" Hshowi H "] " -H show scl H "\n "
c2 =ifi2==i1+41
then "[end] " -+ show sc2 H "\n"
else "[goto i" +show il H "] " H show sc2 + "\n"

11 =ifil=2i4+1 then "" else "-i" +showi + "\n" H sl
12 =ifi2 =271+ 1 then "" else "-i" H show il H "\n" H s2
in (C‘H—": "“H‘"{"_H_SEI_H‘"} "‘H—CI‘H‘"{"‘H'S€2‘H'"} "‘H‘CZ‘H‘Z]‘H‘ZZ
,i2)
,Ai — (" [end]\n",i)

)

Marking

8 (5+5 points).

i 7”7

(a) Give anondeterministic finite automaton that recognizes the sentences “en”, “een”,
"eenram”, “enra”, and “bera”, and no more. The fewer states the better, but

4

you don’t have to construct an automaton with the absolute minimum number
of states.

Solution 8.

start*>®L@ n @ T (c)2 @
start H@L °

Marking

(0]

(b) Is your nondeterministic automaton deterministic? If not, transform this nonde-
terministic automaton into a deterministic automaton using the standard trans-
formation technique.

Solution 8.

start —{ SEH

Marking

