Department of Information and Computing Sciences Utrecht University

INFOB3TC – Solutions for Exam 2

Johan Jeuring

Monday, 25 January 2016, 8:30-10:30

Please keep in mind that there are often many possible solutions and that these example solutions may contain mistakes.

Questions

Regular expressions, languages and pumping lemmas

1 (10 points). Consider the DFA (X, Q, d, S, F) where $X = \{a, b, c\}, Q = \{q_1, q_2\}, d$ is defined by:

 $d q_1 \mathbf{a} = q_1$ $d q_1 \mathbf{b} = q_2$ $d q_2 \mathbf{a} = q_1$ $d q_2 \mathbf{c} = q_2$

 $S = q_1$, and $F = \{q_2\}$. Give the regular expression denoting the language accepted by this automaton.

Solution 1.

 $a^*b(a^+b+c)^*$

Marking

Any regular expression that generates the same language gives full points; an expression that generates either fewer or more sentences gives no points.

0

For the following three tasks: consider the following three languages:

 $L_1 = \{a^n b^m c d^m e^n | n, m \ge 0\}$ $L_2 = \{(ab)^n c d^m | n, m \ge 0\}$ $L_3 = \{a^n b (cd)^n e^n | n \ge 0\}$ **2** (5 points). One of the languages is regular, one context-free and not regular and one not context-free. Which are the regular and the non-regular context-free languages? •

Solution 2.

 L_2 is regular, L_1 is context-free, L_3 is neither.

Marking

-2 per error.

0

3 (5 points). Give a regular grammar for the regular language, and a context-free for the context-free language.

Solution 3.

Here is a regular grammar for L_2 :

$$\begin{array}{l} S \rightarrow abS\\ S \rightarrow c\\ S \rightarrow cB\\ B \rightarrow d\\ B \rightarrow dB \end{array}$$

Here is a context-free grammar for L_1 :

 $\begin{array}{l} S \rightarrow aSe \\ S \rightarrow T \\ T \rightarrow bTd \\ T \rightarrow c \end{array}$

Marking

Each grammar gives 2.5 points; a grammar is either correct (of the correct form, generating the same language) or wrong. $\,\circ\,$

4 (10 points). Prove that the grammar that is context-free but not regular is indeed not regular by using the pumping lemma for regular languages .

Solution 4.

The language L_1 is not regular. To prove it, we assume it is regular and find a contradiction using the pumping lemma.

For any *n*, let $x = \varepsilon$, $y = a^n$, $z = b^m c d^m e^n$. Then, $xyz = a^n b^m c d^m e^n \in L_1$ and $|y| \ge n$. From the pumping lemma, we know there must be a loop in *y*, i.e. y = uvw with q = |v| > 0 such that $xuv^iwz \in L_1$ for all $i \in \mathbb{N}$.

Let i = 2. We expect $xuv^2wz \in L_1$. If $u = a^s$, $v = a^q$, $w = a^t$, then we get $a^{s+2q+t}b^mcd^me^n = a^{n+q}b^mcd^me^n \in L$. But this word is not in L, since q > 0. Therefore, L_1 is not regular.

0

Marking

Proof with errors: -2.5 Correct reasoning but no formal proof: -5 Some argument that deserves merit, but by far correct: -7.5

LR parsing

Consider the following grammar:

 $\begin{array}{l} S \ \rightarrow ABC\$\\ A \ \rightarrow \texttt{a}\\ A \ \rightarrow \texttt{a}C\\ B \ \rightarrow \texttt{b}\\ B \ \rightarrow \texttt{b}C\\ C \ \rightarrow \texttt{c} \end{array}$

5 (10 points). This grammar is not LR(0). Construct the LR(0) automaton for this grammar, and show which conflicts appear where.

Solution 5.

States (1) and (5) have a shift/reduce conflict.

Marking

7.5 points for the correct automaton, 2.5 points for pointing out the correct conflicts. Errors in closures: -2.5 No transitions with nonterminals: -5

6 (10 points). Is this grammar SLR(1)? If so, construct the SLR-table. If not, explain where you cannot make a choice in a shift/reduce conflict or a reduce/reduce conflict.

Solution 6. This grammar is not SLR(1). The follow symbol of A is b, so the conflict in state (1) can be resolved: shift if you see a c in the input, reduce if you see a b. The follow symbol of B is c, so the conflict in state (5) cannot be resolved.

Marking

The argument doesn't mention 'Follow': -5

7 (10 points). Play through the LR parsing process for the sentence "acbcc\$". If there is a choice somewhere, make this explicit. Show in each step at which state in your LR(0) automaton you are.

Solution 7.

stack	input	remark
(0)	acbcc\$	shift
(0)a(1)	cbcc\$	shift (choice)
(0)a(1)c(8)	bcc\$	reduce by $C \rightarrow c$
(0)a(1) C(3)	bcc\$	reduce by $A \rightarrow aC$
(0)A(2)	bcc\$	shift
(0)A(2) b(5)	cc\$	shift (choice)
(0)A(2) b(5) c(8)	c\$	reduce by $C \rightarrow c$
(0)A(2) b(5) C(6)	c\$	reduce by $B \rightarrow bC$
(0)A(2) B(4)	c\$	shift
(0)A(2) B(4) c(8)	\$	reduce by $C \rightarrow c$
(0)A(2) B(4) C(7)	\$	shift
(0)A(2) B(4) C(7)\$		reduce by $S \rightarrow ABC$ \$
S		accept
		-

Marking

No choices mentioned in an otherwise correct derivation: -1 States from the automaton are not given: -2

0

0

0

LL parsing

In these exercises we will look at the grammar

$$S \to AB$$

$$A \to aAa \mid \varepsilon$$

$$B \to bBb \mid \varepsilon$$

8 (15 points). Complete the table below by computing the values in the columns for the appropriate rows. Use *True* and *False* for property values and set notation for everything else.

NT	Production	empty	emptyRhs	first	firstRk	ıs follow	lookAhead
S							
	$A \rightarrow AB$						
Α							
	$A ightarrow \mathtt{a} A \mathtt{a}$						
_	$A \to \varepsilon$						
В							
	$B ightarrow { t b} B { t b}$						
	$B \to \varepsilon$						
							•

Solution 8.

NT	Production	empty	emptyRhs	first	firstRhs	follow	lookAhead
S		True		$\{a,b\}$		{ }	
	$S \rightarrow AB$		True		$\{a,b\}$		$\{a,b\}$
Α		True		{a}		{ a, b }	
	A ightarrowa A a		False		{a}		{a}
_	$A ightarrow \varepsilon$		True		{ }		{ a, b }
В		True		{b}		{b}	
	$B ightarrow extbf{b}B$ b		False		{b}		{b}
	$B \to \varepsilon$		True		{ }		{b}

Marking

-1 per error (if many correct), or, alternatively, +1 per correct answer (if many missing or incorrect). $\,\circ\,$

9 (10 points). Is the above grammar LL(1)? Explain how you arrived at your answer. If the grammar is not LL(1), give a grammar that generates the same language and is LL(1).

Solution 9.

The above grammar is not LL(1) because the *lookAhead* sets of the *A* and *B* productions have a non-empty intersection. The following grammar generates the same language and is LL(1).

$$S \rightarrow AB \\ A \rightarrow aaA \mid \varepsilon \\ B \rightarrow bbB \mid \varepsilon$$

Since *Follow* $(A) = \{b\}$, and *Follow* $(B) = \{\}$, the intersections of lookahead sets of the productions for *A* and *B*, respectively, are empty.

Marking

Not LL(1): 2 points, correct argument: 4 (using the wrong terminology: -1), and a correct LL(1) grammar: 4 points. \circ

10 (5 points). Show the steps that a parser for the above LL(1) grammar goes through to recognize the following input sequence:

aabb

For each step (one per line), show the stack, the remaining input, and the action (followed by the relevant symbol or production) performed. If you reach a step in which you cannot proceed, note the action as "error."

Solution 10.

stack	input	action
S	aabb	initial state
AB	aabb	expand S
aa AB	aabb	expand A
AB	bb	match $(2\times)$
В	bb	expand A
bbB	bb	expand B
В	ε	match $(2\times)$
ε	ε	expand B

Marking Wrong terminology: -1

0