
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Exam 1

Johan Jeuring

Thursday, 19 December 2013, 08:30–10:30

Preliminaries

• The exam consists of 7 pages (including this page). Please verify that you got all
the pages.

• Fill out the answers on the exam itself.

• Write your name and student number here:

• The maximum score is stated at the top of each question. The total amount of
points you can get is 90.

• Try to give simple and concise answers. Write readable text. Do not use pencils
or pens with red ink. You may use Dutch or English.

• When writing grammar and language constructs, you may use any set, sequence,
or language operations covered in the lecture notes.

• When writing Haskell code, you may use Prelude functions and functions from
the following modules: Data.Char, Data.List, Data.Maybe, and Control.Monad. Also,
you may use all the parser combinators from the uu-tc package. If you are in
doubt whether a certain function is allowed, please ask.

Good luck!

1

Questions

In the following five exercises you will write a parser for (a part of) a language for de-
scribing genealogic information in the form of family trees, and you will define several
functions for obtaining particular kinds of information from a family tree, such as the
oldest person in a family tree, and all names appearing in a family tree.

Here are two examples of sentences from the language for family trees:

BEGIN Hans Baas 12 January 1980 END

BEGIN Grietje Huizen 4 December 1953

FATHER BEGIN Gert Huizen 11 February 1926 30 March 1987 END

MOTHER BEGIN Anna Buurten 13 July 1929 END

END

A sentence in a family tree consists of:

• a single person: the keyword BEGIN, followed by a list of names, followed by a
birth date, and an optional (a person may still live) date of death, followed by the
keyword END.

• or a person (as above, so starting with the keyword BEGIN etc.) together with
his or her father and mother, each consisting of a family tree sentence, possibly
containing more fathers and mothers. The father and mother are given after the
(optional) date of death, starting with FATHER and MOTHER, respectively.

1 (12 points). Give the concrete syntax (a context-free grammar) of this language for
family trees. •

2

The abstract syntax of the language for family trees is given by the following datatypes:

data FamilyTree = Single Person
| Child Person FamilyTree FamilyTree deriving Show

type Person = (Name, Birth, Maybe Death)
type Name = [String]
type Birth = Date
type Death = Date
type Date = (Day, Month, Year)
type Day = Int
type Month = Int
type Year = Int

2 (12 points). Define a parser pFamilyTree :: Parser Char FamilyTree that parses sentences
from the language of family trees. •

3

3 (12 points). Define the algebra type, and the fold for the datatype FamilyTree. You may
assume that the type Person is a constant type such as Int and String, that is, you don’t
have to define a fold for Person. •

4 (12 points). Define a function oldest :: FamilyTree → Person that returns the oldest
person in a family tree. Define function oldest as a fold on the datatype FamilyTree. You
may assume the existence of a function age :: Person → Int, which returns the age of a
person in number of days. •

5 (12 points). The function names, which returns all names appearing in a family tree,
can be defined as follows:

names :: FamilyTree→ [Name]
names = foldFamilyTree (single, child)

where single (n, bd, dd) = [n]
child (n, bd, dd) nf nm = n : nf ++ nm

4

The operator ++ used in the definition of child makes this definition rather inefficient.
We get a more efficient function by accumulating the list of names in a parameter. The
type of the function then becomes:

names′ :: FamilyTree→ [Name]→ [Name]

Define the function names′ as a fold on the datatype FamilyTree. •

6 (15 points). Consider the following context-free grammar over the alphabet {a, b, c, +}
with the start symbol A:

A→ Bb |A+A |ABa
B → cA | ε

The operator + is associative.
Describe a sequence of transformations for simplifying this grammar. The resulting

grammar should be minimal and suitable for deriving a parser (using parser combina-
tors). The grammar should not be ambiguous and should not result in inefficiency or
nontermination in the parser.

You may use any of the transformations in the following list or another transforma-
tion discussed during the lecture or in the lecture notes.
• Inline nonterminal • Remove duplicate productions
• Introduce nonterminal • Remove left-recursion
• Introduce ·∗ • Remove unreachable production
• Introduce ·+ • Left-factoring
• Introduce ·?

For each transformation step in the sequence, describe the transformation and give
the transformed grammar. You may use at most two transformations in one step, but
you must mention both of them (e.g. “Inline S and remove unreachable production”).

•

5

7 (15 points). Consider the following three languages:

(a) {(ab)n | n in N}

(b) {an bn | n in N}

(c) {an bm | n, m in N}

For each of these languages, answer the question: is the language regular? If so, give
a DFA accepting the language, if not, prove that it is not regular using the pumping
lemma. •

(a)

6

(b)

(c)

7

