
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Exam 2

Johan Jeuring

Thursday, 30 January 2014, 08:30–10:30

Preliminaries

• The exam consists of 10 pages (including this page). Please verify that you got all
the pages.

• Fill out the answers on the exam itself.

• Write your name and student number here:

• The maximum score is stated at the top of each question. The total amount of
points you can get is 100 (10 of which are bonus points).

• Try to give simple and concise answers. Write readable text. Do not use pencils
or pens with red ink. You may use Dutch or English.

• When writing grammar and language constructs, you may use any set, sequence,
or language operations covered in the lecture notes.

• When writing Haskell code, you may use Prelude functions and functions from
the following modules: Data.Char, Data.List, Data.Maybe, and Control.Monad. Also,
you may use all the parser combinators from the uu-tc package. If you are in
doubt whether a certain function is allowed, please ask.

Good luck!

1

Questions

1 (5+5 points). Consider the grammars for the regular languages L1 and L2:

L1: S→ aS | bS | ε
L2: S→ aA | bS

A→ bS | ε

Give a regular expression for each language. •

2 (10 points). Consider the following NFA:

Sstart

A

B

C

a

a b
b

c

c
c

Transform this non-deterministic automaton into a deterministic automaton (for which
you may give a drawing). •

2

3 (10 points). Consider the following grammar:

S→ E{P} | ε
P→ V=S | ε
V → a | b | c
E→ ! | ?D
D→ PS

To use this grammar in an LL(1) parser, we need to determine several properties of this
grammar. Fill out the table below by computing the values in the columns for the ap-
propriate rows. Use True and False for property values and set notation for everything
else.

NT Production empty emptyRhs first firstRhs follow lookAhead

S
S→ E{P}
S→ ε

P
P→ V=S
P→ ε

V
V → a

V → b

V → c

E
E→ !
E→ ?D

D
D→ PS

•

4 (5 points). Is the above grammar LL(1)? Explain how you arrived at your answer. •

3

5 (10 points). Consider the following grammar, with start symbol S:

S → OSS | C
O→ * | ε
C → 0 | x

We augment the grammar above in preparation for LR parsing:

S′ → S$

and S′ becomes the new start symbol.
Compute the LR(0) automaton corresponding to the full grammar. Number each

state for future reference.
•

4

6 (5 points). Classify each state in your LR(0) automaton as a shift state, reduce state,
or shift-reduce conflict state. Also mark potential reduce-reduce conflicts. If there are
conflicts, would applying SLR(1) parsing help to resolve these? •

7 (5 points). Play through the LR parsing process (no extras, neither SLR nor LALR) for
the word *00. Resolve potential shift-reduce conflicts by always choosing to shift, and
potential reduce-reduce conflicts by picking any of the available reductions. •

5

8 (5 points). Are there words in the language that cannot be parsed successfully using
the simplistic strategy from the previous task? If so, give an example. •

9 (15 points). In the ‘additional task’ 8 of the third lab exercise you have to include a for
statement in the source language of (simplified) C#, and add functionality to compile a
for statement. Here is an example of a for statement:

for (n=0; n<10; n++)

{ do something }

You can assume that the three components between parentheses are expressions, and
that doing something is achieved by means of a block of statements.

Sketch how you would translate a for statement into SSM instructions. Give an ex-
planation similar to the explanations of translating statements on the slides on the Sim-
ple Stack Machine. Is your translation optimal? See the SSM instruction set reference
in Section . •

10 (5 points). Consider the following Haskell datatype that describes regular expres-
sions over an alphabet type s:

data Regex s = Empty
| Epsilon

6

| Const s
| Sequ (Regex s) (Regex s)
| Plus (Regex s) (Regex s)
| Star (Regex s)

Translate the regular expression

(aa+ b)∗

into a value of type Regex Char. •

11 (10 points). Define an algebra type RegexAlgebra and a fold function foldRegex for the
Regex type. •

12 (10 points). This is a bonus exercise. If you answer the previous exercises correctly,
your grade will be a 10.

Define a function

regexParser :: Eq s⇒ Regex s→ Parser s [s]

using the parser combinators such that regexParser r is a parser for the language de-
scribed by the regular expression r. The parser should return the list of symbols recog-
nized. You should define the function in terms of foldRegex. •

7

8

SSM Reference

SSM instructions are given in textual form, called assembler notation. For this exam, a
program is a sequence of instructions with each instruction on a separate line, option-
ally proceed by a label and a colon (e.g. main:). A label (e.g. main) may be used as an
argument to an instruction.

Copying Instructions

Instructions Description

ldc Load a constant
lds Load a value relative to the SP
ldh Load a value relative to the HP
ldl Load a value relative to the MP
lda Load a value pointed to by the value on top of the stack
ldr Load a register value
ldrr Load a register with a value from another register
ldsa Load address of value relative to the SP
ldla Load address of value relative to the MP
ldaa Load address of value relative to the address on top of the stack
sts Store a value relative to the SP
sth Store a value relative to the HP
stl Store a value relative to the MP
sta Store a value pointed to by a value on the stack
str Store a value in a register

Convenience Instructions For the Stack

Instructions Description

ajs Adjust the SP
link Save the MP, adjust the MP and SP suitable for programming

language function entry
unlink Reverse of link

9

Arithmetic Instructions

Instructions Description

add, sub, mul,
div, mod, neg,
and, or, xor

Binary operations

not Unary operation
cmp Put an int value on the stack which is interpreted as a status

register value containing condition code to be used by a branch
instruction

eq, ne, lt, gt, le,
ge

Put true value on the stack if comparison is true

Control Instructions

Instructions Description

beq, bne, blt,
bgt, ble, bge

Branch on equality, unequality, less than, greater than, less or
equal, greater or equal. These instructions pop the stack, inter-
pret it as a condition code and jump accordingly

bra Branch always, no popping of the stack
brf (brt) Branch if top of stack is false (true)
bsr Branch to subroutine. Like bra, but pushes the previous PC be-

fore jumping
jsr Jump to subroutine. Like bsr, but pops its destination from the

stack
ret Return from subroutine. Pops a previously pushed PC from the

stack and jumps to it
halt Halt execution

10

