
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 2

Johan Jeuring

Thursday, 30 January 2014, 08:30–10:30

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Questions

1 (5+5 points). Consider the grammars for the regular languages L1 and L2:

L1: S→ aS | bS | ε
L2: S→ aA | bS

A→ bS | ε

Give a regular expression for each language. •

Solution 1.

L1: (a+ b) ∗

L2: (b∗ab)∗a

Marking
You either get full points or no points for both subquestions.
No penalty for using notation in a novel way (such as ?a instead of a?).
L1 was answered correctly by almost everybody.
The most common mistakes in L2 were: empty string part of the language, and accepts
a string with a b at the end.

◦

2 (10 points). Consider the following NFA:

1

Sstart

A

B

C

a

a b
b

c

c
c

Transform this non-deterministic automaton into a deterministic automaton (for which
you may give a drawing). •

Solution 2.

Sstart AB ABC

AC

a c

b

c

c

b

Marking
The most common mistakes were:
Not a deterministic automaton (in one state): -2
Forgotten an end-state: -2
Also accept a: -2
Forgotten a single transition: -2

◦

3 (10 points). Consider the following grammar:

S→ E{P} | ε
P→ V=S | ε
V → a | b | c
E→ ! | ?D
D→ PS

To use this grammar in an LL(1) parser, we need to determine several properties of this
grammar. Fill out the table below by computing the values in the columns for the ap-
propriate rows. Use True and False for property values and set notation for everything
else.

•

2

Solution 3.

NT Production empty emptyRhs first firstRhs follow lookAhead

S True { !, ?} {{ , }, !, ?}
S→ E{P} False { !, ?} { !, ?}
S→ ε True { } {{ , }, !, ?}

P True {a, b, c} {{ , }, !, ?}
P→ V=S False {a, b, c} {a, b, c}
P→ ε True { } {{ , }, !, ?}

V False {a, b, c} {=}
V → a False {a} {a}
V → b False {b} {b}
V → c False {c} {c}

E False { !, ?} {{ }
E→ ! False { !} { !}
E→ ?D False {?} {?}

D True {a, b, c, !, ?} {{ }
D→ PS True {a, b, c, !, ?} {{ , a, b, c, !, ?}

Marking
One error in a column: -1
More than one error: -2.5
I didn’t check the Rhs columns carefully, their function is to help fill out the other
columns

◦

4 (5 points). Is the above grammar LL(1)? Explain how you arrived at your answer. •

Solution 4.
The above grammar is not LL(1) because the lookAhead sets of the S productions have

a non-empty intersection.

Marking
No mentioning of lookaheadsets: -2
Incomprehensible argument: -5
Using the wrong terms, but managed to convince that the core is correct: -1

◦

5 (10 points). Consider the following grammar, with start symbol S:

3

S → OSS | C
O→ * | ε
C → 0 | x

We augment the grammar above in preparation for LR parsing:

S′ → S$

and S′ becomes the new start symbol.
Compute the LR(0) automaton corresponding to the full grammar. Number each

state for future reference.
•

Solution 5. I only show the top-level productions (‘kernel’ items) in a state of the au-
tomaton; of course the closure should also be calculated.

(0) S′ → •S$start

(1) C→ 0• (2) C→ x• (3) O→ *•

(4) S→ O•SS (5) S→ OS•S

(6) S→ OSS•(7) S→ C•(8) S′ → S•$

0
x

*

S

O

C
C

C

S

O

O

S

0

x

*
0

x *

Marking
ε interpreted as a symbol: -4
No closures of item sets: -4

◦

6 (5 points). Classify each state in your LR(0) automaton as a shift state, reduce state,
or shift-reduce conflict state. Also mark potential reduce-reduce conflicts. If there are
conflicts, would applying SLR(1) parsing help to resolve these? •

Solution 6. The states (1), (2), (3), (6), (7) are all reduce states, and do not gain extra
items by computing the closure. The state (8) is the special end state.

The states (0), (4), (5) gain the following items for closure

4

S → •OSS
S → •C
O→ •*
O→ •
C → •0
C → •x

Therefore, all three states have a shift-reduce conflict. SLR(1) parsing would not be of
any help here, because we can shift for all three symbols in the alphabet, and the follow
set of O also contains all three symbols.

Marking
Shift/reduce conflicts wrong: -3
Shift/reduce conflicts help, or no mentioning of SLR: -2
SLR(1) doesn’t help, but no further explanation: -1

◦

7 (5 points). Play through the LR parsing process (no extras, neither SLR nor LALR) for
the word *00. Resolve potential shift-reduce conflicts by always choosing to shift, and
potential reduce-reduce conflicts by picking any of the available reductions. •

Solution 7.

stack input remark
(0) *00$ we always shift, thus move to (3)
(0)*(3) 00$ reduce by O→ *

(0)O(4) 00$ we always shift, thus move to (1)
(0)O(4)0(1) 0$ reduce by C→ 0

(0)O(4)C(7) 0$ reduce by S→ C
(0)O(4)S(5) 0$ we always shift, thus move to (1)
(0)O(4)S(5)0(1) $ reduce by C→ 0

(0)O(4)S(5)C(7) $ reduce by S→ C
(0)O(4)S(5)S(6) $ reduce by S→ OSS
(0)S(8) $ success

Marking
Not completely finsihed the derivation: -1 or -2
Wrong derivation strategy: -5

◦

8 (5 points). Are there words in the language that cannot be parsed successfully using
the simplistic strategy from the previous task? If so, give an example. •

5

Solution 8. Yes, one example is the word 00 which can be derived as follows

S⇒ OSS⇒∗ εCC⇒∗ 00

Trying to parse this word yields

stack input remark
(0) 00 we always shift, thus move to (1)
(0)0(1) 0 reduce by C→ 0
(0)C(7) 0 reduce by S→ C
(0)S(8) 0 failure

Marking
Correct, but inconsistent with answers to previous exercises: -2
Correct, but with strange arguments: -2
Yes, but wrong example: -4

◦

9 (15 points). In the ‘additional task’ 8 of the third lab exercise you have to include a for
statement in the source language of (simplified) C#, and add functionality to compile a
for statement. Here is an example of a for statement:

for (n=0; n<10; n++)

{ do something }

You can assume that the three components between parentheses are expressions, and
that doing something is achieved by means of a block of statements.

Sketch how you would translate a for statement into SSM instructions. Give an ex-
planation similar to the explanations of translating statements on the slides on the Sim-
ple Stack Machine. Is your translation optimal? See the SSM instruction set reference
in Section ??. •

Solution 9.
See your own solution to additional task 8 in the solution to the labs.

Marking
No discussion of optimality: -4
No arguments for why the presented solution is optimal or not: -2
No abstraction from the example: -1
No use whatsoever of SSM instructions in the solution: -5
Confusing arguments: -1 to -10
No initialisation: -2
No code for “do something”: -3

◦

6

10 (5 points). Consider the following Haskell datatype that describes regular expres-
sions over an alphabet type s:

data Regex s = Empty
| Epsilon
| Const s
| Sequ (Regex s) (Regex s)
| Plus (Regex s) (Regex s)
| Star (Regex s)

Translate the regular expression

(aa+ b)∗

into a value of type Regex Char. •

Solution 10.

Star (Plus (Sequ (Const ’a’) (Const ’a’)) (Const ’b’))

Marking
Most people answered this exercise correctly. Some errors:
Sequencing star using Sequ to the end: -3
+ binds stronger than sequencing: -2

◦

11 (10 points). Define an algebra type RegexAlgebra and a fold function foldRegex for the
Regex type. •

Solution 11. The algebra needs two parameters, because Regex already has one:

type RegexAlgebra s r = (r, r, s→ r, r→ r→ r, r→ r→ r, r→ r)

The fold function is straightforward to define:

foldRegex :: RegexAlgebra s r→ Regex s→ r
foldRegex (empty, epsilon, const, sequ, plus, star) r = fold r

where
fold Empty = empty
fold Epsilon = epsilon
fold (Const s) = const s
fold (Sequ r1 r2) = sequ (fold r1) (fold r2)
fold (Plus r1 r2) = plus (fold r1) (fold r2)
fold (Star r) = star (fold r)

7

Marking
The algebra contributes 4 points to the grade, the fold 6 points.
Not providing the s type as an argument in the algebra: -1
Not providing the s type as an argument in the algebra, and not using it: -2
Recursive occurrences in algebra constant type s instead of recursive type r: -2
Using RegEx itself instead of r at recursive positions: -3
Using Const instead of a type variable in the algebra: -2

fold not applied recursively: -4
Algebra not passed on in recursive calls: -2

◦

12 (10 points). This is a bonus exercise. If you answer the previous exercises correctly,
your grade will be a 10.

Define a function

regexParser :: Eq s⇒ Regex s→ Parser s [s]

using the parser combinators such that regexParser r is a parser for the language de-
scribed by the regular expression r. The parser should return the list of symbols recog-
nized. You should define the function in terms of foldRegex. •

Solution 12.

regexParserAlgebra :: Eq s⇒ RegexAlgebra s (Parser s [s])
regexParserAlgebra = (empty,

succeed [],
λs→ (:[])<$> symbol s,
λx1 x2 → (++)<$> x1 <∗> x2,
(<|>),
λx→ concat <$> many x)

regexParser′ :: Eq s⇒ Regex s→ Parser s [s]
regexParser′ = foldRegex regexParserAlgebra

Handling the end of input was not required, but ok if done.

Marking
Using a fold but no algebra component correct: +2
Per correct algebra component: about +1 or +2

◦

8

