
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 1

Johan Jeuring

Friday, 12 December 2014, 08:30–10:30

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Questions

A group chat in Whatsapp looks as follows:

These group chats are stored on Whatsapp servers, and sent to the computers (phones,
tablets) of the members of the groupchat. The internal representation of the above
group chat (or at least a part of it) might look as follows:

GROUPCHAT

1

NAME Whitmans Chat

MEMBERS Alice, France, Jack, Ned, Peter, Zissou

MESSAGES

MESSAGE

NAME Alice

TIME 7:01 PM, March 14, 2013

CONTENT I’ll never forget this country. I love even the way it smells END

MESSAGE

NAME Jack

TIME 11:40 PM, March 14, 2013

CONTENT mountains.jpg END

MESSAGE

NAME Peter

TIME 7:01 PM, March 14, 2013

CONTENT Amazing END

MESSAGE

NAME Ned

TIME 7:03 PM, March 14, 2013

CONTENT Wow U+1F60D END

MESSAGE

NAME Zissou

TIME 11:39 AM, March 15, 2013

CONTENT http:\\www.willis.com\ END

In this exercise we look at the language of group chats.

A group chat consists of the keyword GROUPCHAT followed by:

• the keyword NAME followed by a name,

• the keyword MEMBERS followed by a non-empty list of members, separated by
comma’s,

• the keyword MESSAGES followed by a list of messages, where a message consists
of the keyword MESSAGE, followed by the keyword NAME, a name, the keyword
TIME, a time, the keyword CONTENT, some content, and the keyword END.

1 (12 points). Give a concrete syntax (a context-free grammar) of this language for
group chats. You may use nonterminal Identifier to recognise a single name, and String
to recognise the content of a message (a string not containing ”END”). •

Solution 1.

GroupChat→ "GROUPCHAT" "NAME" Name "MEMBERS" Members "MESSAGES" Message∗

Name → Identifier+

Members → Name "," Members |Name

2

Message → "MESSAGE" "NAME" Name "TIME" Time "CONTENT" String "END"

Time → Hours ":" Minutes APM "," Month Day "," Year
Hours → Natural
Minutes → Natural
APM → "AM" | "PM"
Month → "January" | . . . | "December"
Day → "0" | . . . | "31"
Year → Natural

Here is the above example sentence:

ex = "GROUPCHAT NAME "++ name ++ " MEMBERS "++ members ++ " MESSAGES "++ messages
name = "Whitmans Chat"

members = "Alice, France, Jack, Ned, Peter, Zissou"

messages = message1 ++ "\n"++ message2 ++ "\n"++ message3 ++ "\n"++ message4
message1 = "MESSAGE NAME Alice TIME 7:01 PM, March 14, 2013 "++

"CONTENT I’ll never forget this country. I love even the way it smells END"

message2 = "MESSAGE NAME Jack TIME 11:40 PM, March 14, 2013 CONTENT mountains.jpg END"

message3 = "MESSAGE NAME Peter TIME 7:01 PM, March 14, 2013 CONTENT Amazing END"

message4 = "MESSAGE NAME Ned TIME 7:03 PM, March 14, 2013 CONTENT Wow U+1F60D END"

message5 = "MESSAGE NAME Zissou TIME 11:39 AM, March 15, 2013 "++
"CONTENT http:\\www.willis.com END"

Marking
String instead of Identifier (or something like that) in Name: -1
Integers for the numbers (hours, minutes, days, years) in the language: -1
Comma at the end of the members list: -1
Members not separated by comma’s: -1
Keywords forgotten: -1 per keyword
Requiring two digits where one digit is also possible: -1
String instead of list of months: -1
Letters instead of AM and PM: -1
No definition of Time or Date: -2 per concept

◦
The abstract syntax of the language for groups chats is given by the following (data)types:

type GroupChat = (Name, Members, Messages)
type Name = [String]
type Members = [Name]
type Messages = [Message]
type Message = (Name, Time, Content)
type Time = (Hours, Minutes, APM, Date)

3

type Hours = Int
type Minutes = Int
data APM = AM | PM deriving Show
type Date = (Day, Month, Year)
type Day = Int
type Month = Int
type Year = Int
type Content = String

2 (12 points). Define a parser pGroupChat :: Parser Char GroupChat that parses sentences
from the language of groupchats. •

Solution 2.

spaces = greedy (satisfy isSpace)
tokensp s = token s <∗ spaces
identifiersp = identifier <∗ spaces
integersp = integer <∗ spaces
pGroupChat :: Parser Char GroupChat
pGroupChat = (, ,)

<$ tokensp "GROUPCHAT"

<∗ tokensp "NAME"

<∗> pName
<∗ tokensp "MEMBERS"

<∗> pMembers
<∗ tokensp "MESSAGES"

<∗> many pMessage
pName :: Parser Char Name
pName = many identifiersp
pMembers :: Parser Char Members
pMembers = listOf pName (tokensp ",")

pMessage :: Parser Char Message
pMessage = (\ n t c→ (n, t, c))

<$> tokensp "MESSAGE"

<∗ tokensp "NAME"

<∗> pName
<∗ tokensp "TIME"

<∗> pTime
<∗ tokensp "CONTENT"

<∗> untilEND
untilEND :: Parser Char Content
untilEND = (const []<$> tokensp "END")

<<|> ((:)<$> satisfy (const True)<∗> untilEND)

4

pTime :: Parser Char Time
pTime = (λhours minutes apm month day year→ (hours, minutes, apm, (day, month, year)))

<$> integersp
<∗ tokensp ":"

<∗> integersp
<∗> (AM <$ tokensp "AM"<|> PM <$ tokensp "PM")
<∗ tokensp ","

<∗> pMonth
<∗> integersp
<∗ tokensp ","

<∗> integersp
months = ["January", "February", "March", "April", "May", "June"

, "July", "August", "September", "October", "November", "December"
]

pMonth :: Parser Char Month
pMonth = foldr1 (<|>) (zipWith (λx y→ const x <$> y) [1 . . 12] (map tokensp months))
— Parser test cases
test = pGroupChat ex

Marking
No abstract syntax for AM/PM: -1
Incorrect parsing of months, and computation of corresponding integer: -2
Minor errors: -1
Tokens not (or partially) parsed: -2(-1)
Does not follow the concrete syntax: -4(-2)
Types as value constructors: -2
String instead of a parser for strings: -2

◦

3 (12 points). Whatsapp only offers chats and groupchats. I can imagine it would be
useful to have a hierarchy of chats. For example, Utrecht University might start a chat,
with seven subchats for the seven faculties. So people can chat at the university level,
or at their own faculty level. Each faculty chat consists of faculty wide chats, but also
of chats at the various departments of the faculty, and so on. In this exercise I en-
code a slightly simplified version of this situation. A GroupChatTree is either a single
GroupChat, or it collects a number of GroupChatTree’s under a particular name.

data GroupChatTree = Fork Name [GroupChatTree]
| Single GroupChat

Define the algebra type, and the fold for the datatype GroupChatTree. You may assume
that the type GroupChat is a constant type such as Int and String, that is, you don’t have
to define a fold for GroupChat. •

5

Solution 3.

type GroupChatTreeAlgebra a = (Name→ [a]→ a, GroupChat→ a)
foldGroupChatTree :: GroupChatTreeAlgebra a→ GroupChatTree→ a
foldGroupChatTree (fork, single) = fold where

fold (Fork name groupchattrees) = fork name (map fold groupchattrees)
fold (Single groupchat) = single groupchat

— some examples to test the solutions
gcCS :: GroupChat
gcCS = (["Computer", "Science"]

, [["Johan", "Jeuring"], ["Joao", "Pizani"]]
, [(["Johan", "Jeuring"], atime, "Hi!"), (["Johan", "Jeuring"], atime, "there")]
)

gcW :: GroupChat
gcW = (["Mathematics"]

, [["Rob", "Bisseling"], ["Jan", "Hoogendijk"]]
, [(["Rob", "Bisseling"], atime, "Hello"), (["Jan", "Hoogendijk"], atime, "world!")]
)

gcWI :: GroupChatTree
gcWI = Fork ["WI"] [Single gcCS, Single gcW]

atime = (7, 24, PM, (27, 11, 2014))

Marking
Algebra not a type: -2
Algebra completely wrong: -4
No type argument of algebra: -2
Two type arguments to the algebra: -2
Algebra just a single type: -1
Not using parameter in list of recursive calls in algebra: -3
Recursive parameter instead of GroupChat: -2
Type fold incorrect: -2
No parens in pattern matching: -1
No recursive def of fold: -6
No map in recursive def of fold: -3
Resulttype of fold not a type variable: -2
Minor mistakes: -1
fold... instead of fold in the recursive call (without the algebra argument): -2

◦

4 (9 points). Define a function nrOfMessagesGCT :: GroupChatTree→ Int that returns the
number of messages present in a GroupChatTree. Define function nrOfMessagesGCT as a
fold on the datatype GroupChatTree.

6

•

Solution 4.

nrOfMessagesGCT :: GroupChatTree→ Int
nrOfMessagesGCT = foldGroupChatTree (\ xs→ sum xs, nrOfMessagesGC)
nrOfMessagesGC :: GroupChat→ Int
nrOfMessagesGC (, , messages) = length messages
test1 = nrOfMessagesGCT gcWI

Marking
Using foldGroupChatTree but no definition of fork and single: +2 (-7)
Using foldGroupChatTree but incorrect definition of fork and single: +2(-7)
Using Fork n xs as argument to fork (interpreting arguments correctly): -2
Algebra and tree argument order swapped: -1
Double recursion: -5
No fold but explicitly recursive definition: -6
Wrongly typed fork function: -3
const 1 instead of nrOfMessagesGC: -3

◦

5 (9 points). Define a function messagesMember :: GroupChatTree→ Member→ Messages
that returns the messages of a particular member in a GroupChatTree. Define function
messagesMember as a fold on the datatype GroupChatTree. •

Solution 5.

messagesMember :: GroupChatTree→ Name→ Messages
messagesMember = foldGroupChatTree messagesMemberAlgebra

where messagesMemberAlgebra = (\ xs m→ concat (map ($m) xs)
, λ(, , ms)→ λm→ filter (λ(n, t, c)→ n = = m) ms)

test2 = messagesMember gcWI ["Johan", "Jeuring"]

Marking
Using foldGroupChatTree but no definition of fork and single: +2 (-7)
Using foldGroupChatTree but incorrect definition of fork and single: +2(-7)
Not passing the name on recursively: -3
Forget the dollar when passing on the name recursively: -1
Member name and recursive results swapped in algebra: -1
Member name and recursive results swapped in fold: -3
Double recursion: -5

◦

7

6 (9 points).

(a) Give an example of a grammar that can be left-factorized
Solution 6.

S→ a S b | a S a | a

Marking

◦

(b) Left-factorize this grammar
Solution 6.

S→ a T
T → S U | ε
U→ b | a

Marking

◦

(c) Explain why left-factorization may be a useful grammar transformation
Solution 6.

When you translate a context-free grammar that can be left-factorized into a com-
binator parser, the parser performs the same actions twice for the part that can be
left-factorized. If the parser is of a particular recursive structure, this might lead
to an exponential time required for parsing.

Marking

◦

•

7 (9 points).

(a) Give an example of a grammar that is left-recursive
Solution 7.

S→ SS | a

8

Marking

◦

(b) Remove this left-recursion

Solution 7.

S→ a | a Z
Z→ S | S Z

Marking

◦

(c) Explain why removing left-recursion may be a useful grammar transformation

Solution 7. If you directly translate a left-recursive context-free grammar to a
parser combinator, the parser combinator does not terminate on any input. Re-
moving left-recursion removes this cause of non-termination.

Marking
Loop in the grammar instead of the parser: -1
Ensures termination instead of avoids non-termination: -1

◦

•

Consider the following NFA (Nondeterministic Finite-state Automaton), with start
state S, and final state Z.

A

BSstart

Z

C

a

a

b

a
b

a

b

b

a

a

8 (6 points). Construct a regular grammar with the same language. •

9

Solution 8.

S→ a A
S→ a B
S→ b Z
A→ a B
A→ b C
B→ b A
B→ b B
B→ a Z
C→ a Z
Z→ a Z
Z→ ε

Marking
No productions for Z: -2
Production Z→ ε forgotten: -1

◦

9 (6 points). Construct a DFA (Deterministic Finite-state Automaton) with the same
language (you may draw a DFA). •

Solution 9.

Sstart AB ABC

ZC BZ

a

b a

b
b

a

a

b

a

a

Note that state C is not reachable from the start state, so it may safely be removed.

Marking
No final states: -1
Minor errors (single forgotten transition): -1
Still non-deterministic: -4

◦

10 (6 points). Suppose we have two context-free grammars G1 = (T1, N1, R1, S1) and
G2 = (T2, N2, R2, S2), where the intersection of N1 and N2 is empty. Define G = (T1 ∪
T2, N1 ∪ N2 ∪ {S}, R1 ∪ R2 ∪ {S→ S1 S2}, S), where S is the new startsymbol.

10

(a) What is the language of G?

(b) This construction does not work for regular grammars. Why not?

(c) Describe the construction of a grammar with the same language as G, which is
regular if both G1 and G2 are regular.

•

Solution 10.

(a) L (G) = {x y | x← L (G1), y← L (G2)}.

(b) The resulting grammar is not regular, since it is of the form S→ S1 S2, and hence
it has two instead of one non-terminals in a right-hand side of a production.

(c) See Theorem 8.10 in the lecture notes: we obtain a regular grammar for G if we
replace in G1 every production of the form T → x and T → ε by T → x S2 and
T → S2, respectively.

Marking
G = G1 G2: -1
Using automata instead of productions in c): -1

◦

11

