
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 2

Johan Jeuring

Friday, 30 January 2015, 11:00–13:00

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Questions

Regular expressions and languages

1 (5+5 points). Consider the grammars for the regular languages L1 and L2:

L1: S→ bA | aS
A→ aS | ε

L2: S→ bS | Sa | ε

Give a regular expression for each language. •

Solution 1.

L1: (a+ ba)∗b
L2: b∗a∗

Marking
You either get full points or no points for both subquestions.
No penalty for using notation in a novel way (such as ?a instead of a?).
L2 was answered correctly by almost everybody.
The most common mistakes in L1 were: empty string part of the language, and accepts
the string bb.

◦

1

2 (10+10 points). For each language definition below, show whether or not the language
is regular. If it is regular, give one of the following:

(a) a regular grammar in an acceptable form,

(b) a regular expression, or

(c) a finite state automaton.

If the language is not regular, prove that using the pumping lemma for regular lan-
guages.

(a) {ompn | n = m + 1}

(b) {3j7k | j > 2, k < 5}

•
Solution 2.

(a) The language L = {ompn | n = m + 1} is not regular. To prove it, we must assume
it is regular and find a contradiction with the pumping lemma.

Let x = ε, y = om, z = pm+1.

Then, xyz = ompm+1 ∈ L and |y| > m.

From the pumping lemma, we know there must be a loop in y, i.e. y = uvw with
q = |v |>0 such that xuviwz ∈ L for all i ∈N.

Let i = 2. We expect xuv2wz ∈ L. If u = os, v = oq, w = or, then we expect
oso2 qorpm+1 ∈ L. But it does not, because s + 2 q + r > m Therefore, L is not
regular.

(b) Two possible options:

333+(ε + 7+ 77+ 777+ 7777)
333+7?7?7?7?

Marking
a:
No proof : -8
Essential parts missing in the proof: -2 ... -8
m and n swapped: -1
b:
Five 7’s, no zero 7’s, two 3’s: -2
j and k instead of 3 and 7: -1
Exactly three 3’s: -2

◦

2

LL parsing

In these exercises we will look at the grammar

M→ <E>M | ε
E→ Q |Q;E
Q→ 0 | 1 |M

3 (15 points). Complete the table below by computing the values in the columns for the
appropriate rows. Use True and False for property values and set notation for every-
thing else.

NT Production empty emptyRhs first firstRhs follow lookAhead

M
M→ <E>M
M→ ε

E
E→ Q
E→ Q;E

Q
Q→ 0

Q→ 1

Q→ M
•

Solution 3.

NT Production empty emptyRhs first firstRhs follow lookAhead

M True {<} {;, >}
M→ <E>M False {<} {<}
M→ ε True { } {;, >}

E True {0, 1, <, ;} {>}
E→ Q True {0, 1, <} {0, 1, <, >}
E→ Q;E False {0, 1, <, ;} {0, 1, <, ;}

Q True {0, 1, <} {;, >}
Q→ 0 False {0} {0}
Q→ 1 False {1} {1}
Q→ M True {<} {<, ;, >}

Marking
-1 per erroneous cell

◦

3

4 (10 points). Is the above grammar LL(1)? Explain how you arrived at your answer.
If the grammar is not LL(1), transform the grammar such that is LL(1) and complete a
new table with only the rows that differ from the old table. •

Solution 4.
The above grammar is not LL(1) because the lookAhead sets of the E productions have

a non-empty intersection. To make this grammar LL(1), we only need to left-factor E.

NT Production empty emptyRhs first firstRhs follow lookAhead

E→ QF True {0, 1, <} {0, 1, <, >}
F True {;} {>}

F→ ;E False {;} {;}
F→ epsilon True { } {>}

Marking
The points are divided as follows: 4 points for the LL(1) question, 3 points for the
transformation, and 3 points for the updated table.

◦

4

5 (5 points). Show the steps that a parser for the above LL(1) grammar (after transfor-
mation if necessary) goes through to recognize the following input sequence:

<0;<1>>

For each step (one per line), show the stack, the remaining input, and the action (fol-
lowed by the relevant symbol or production) performed. If you reach a step in which
you cannot proceed, note the action as “error.“ •

Solution 5.

stack input action
M <0;<1>> initial state

<E>M <0;<1>> expand M
E>M 0;<1>> match <

QF>M 0;<1>> expand E
0F>M 0;<1>> expand Q

F>M ;<1>> match 0

;E>M ;<1>> expand F
E>M <1>> match ;

QF>M <1>> expand E
MF>M <1>> expand Q

<E>MF>M <1>> expand M
E>MF>M 1>> match <

QF>MF>M 1>> expand E
1F>MF>M 1>> expand Q

F>MF>M >> match 1

>MF>M >> expand F
MF>M > match >

F>M > expand M
>M > expand F

M ε match >

ε ε expand M

Marking
Not a left-most derivation (but otherwise OK): -3
Expanding and matching separated: -2
Error in the derivation: -2

◦

5

LR parsing

Consider the following grammar, with start symbol S:

S → L = R | R
L → * R | i
R→ L

We augment the grammar above in preparation for LR parsing:

S′ → S$

and S′ becomes the new start symbol.

6 (10 points). Compute the LR(0) automaton corresponding to the full grammar. Num-
ber each state for future reference. •

Solution 6.

(0) S′ → •S$
S → •L=R
S → •R
L → •*R
L → •i
R → •L

start

(1) S′ → S•$ (2) S → L•=R
R→ L• (3) S→ L=R•

(4) L → *•R
R→ •L
L → •*R
L → •i

(5) S → L=•R
R→ •L
L → •*R
L → •i

(6) R→ L•(7) L→ i•(8) S→ R•

(9) L→ *R•

S L

R

*

i

=

i*
L

R

i

R

L

*

Marking
No closures of item sets: -4
Missing transitions: -1 ... -3

◦

6

7 (10 points). Classify each state in your LR(0) automaton as a shift state, reduce state,
or shift-reduce conflict state. Also mark potential reduce-reduce conflicts. If there are
conflicts, would applying SLR(1) parsing help to resolve these? •

Solution 7. The states (3), (6), (7), (8), (9) are all reduce states. The states (0), (1),
(4), (5) are all shift states. The state (2) is a shift-reduce state, and therefore there is a
shift-reduce conflict.

Would a SLR(1) approach help in parsing this grammar? Since = is in the follow set
of R (and L), we cannot distinguish between reducing, or shifting an =. So this grammar
is also not SLR(1).

Marking
Shift/reduce conflicts wrong: -2
SLR(1) helps (or nothing for this question): -5

◦

7

8 (10 points). Play through the LR parsing process for the word ∗∗i=*i$. If there is a
choice somewhere, make this explicit. Show in each step at which state in your LR(0)
automaton you are. •

Solution 8.

stack input remark
(0) ∗∗i=*i$shift
(0)*(4) *i=*i$ shift
(0)*(4) *(4) i=*i$ shift
(0)*(4) *(4) i(7) =*i$ reduce by L→ i

(0)*(4) *(4)L(6) =*i$ reduce by R→ L
(0)*(4) *(4)R(9) =*i$ reduce by L→ *R
(0)*(4) L(6) =*i$ reduce by L→ R
(0)*(4) R(9) =*i$ reduce by L→ *R
(0)L(2) =*i$ shift (could reduce here, but that would fail)
(0)L(2) =(5) *i$ shift
(0)L(2) =(5) *(4) i$ shift
(0)L(2) =(5) *(4) i(7) $ reduce by L→ i

(0)L(2) =(5) *(4) L(6) $ reduce by R→ L
(0)L(2) =(5) *(4) R(9) $ reduce by L→ *R
(0)L(2) =(5) L(6) $ reduce by R→ L
(0)L(2) =(5) R(3) $ reduce by S→ L=R
(0)S(1) $ ready

Marking
Not completely finished the derivation: -1 or -2
Only stack structure correct: -8
Stack structure half correct: -9

◦

8

