
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 1

Johan Jeuring

Wednesday, 21 December 2016, 11:00–13:00

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Multiple-choice questions

In this series of 10 multiple-choice question, you get:

• 5 points for each correct answer,

• 1 point if you do not answer the question,

• and 0 points for a wrong answer.

Answer these questions with one of a, b, c, or d. Sometimes multiple answers are correct,
and then you need to give the best answer.

1 (5 points). A grammar has the following productions:

T → y | xTx | TxyxT

Which of the following sequences is a sentence in the language of T?

a) yxyxxxyxx

b) xxxyyyxxx

c) yxyxyxyx

d) yxyxxxxxyxy

•

Solution 1. a). The number of y’s has to be odd, and there is always an x beside a y. ◦

1

2 (5 points). A grammar has the following productions:

T → ε | Tx | xTy

If we add a single production to this grammar, we can derive the sentence xxyyxxyy.
Which of the following productions do we have to add?

a) T → xTyy

b) T → yyTxx

c) T → TT

d) All of the above answers are correct.

•

Solution 2. d).

Marking

◦

3 (5 points). You want to write a parser using the standard parser combinator approach
for the following grammar:

S → Ra | Sa | z
R → bR | bS

Before you construct the parser, you first transform the grammar by:

a) Removing left-recursion obtaining

S → (Ra)Z? | zZ?
Z → aZ?
R → bR | bS

b) Left-factoring obtaining

S → Ra | Sa | z
R → bT
T → R | S

c) Left-factoring, inlining, and removing unused productions obtaining

S → bTa | Sa | z
T → bT | S

2

d) Removing left-recursion, left-factoring, introducing +/*, inlining, and removing
unused productions obtaining

S → bTa+ | za∗

T → bT | S

•

Solution 3. d). ◦

4 (5 points). Suppose we have a parser pExpr :: Parser Char Expr, where the datatype
Expr has a constructor Let Identifier Expr Expr. What is the type of the following parser
combinator?

pDecl = Let <$ token "let"

<∗> identifier
<∗ symbol ’=’
<∗> pExpr
<∗ token "in"

<∗> pExpr

a) Parser Char (Identifier→ Expr→ Expr→ Expr)

b) Parser Char ((Identifier, Expr, Expr)→ Expr)

c) Parser Char (String→ Identifier→ Char→ Expr→ String→ Expr→ Expr)

d) Parser Char Expr

•

Solution 4. d). ◦

5 (5 points). The parser sepBy p sep parses one or more occurrences of p (for example, a
parser for integers), separated by sep (for example, a parser for a comma).

sepBy :: Parser Char a→ Parser Char b→ Parser Char [a]

Which of the below definitions is the correct implementation of sepBy?

a) sepBy p sep = (:)<$> p <∗> option ((λx y→ y)<$> sep <∗> sepBy p sep) []

b) sepBy p sep = (:)<$> p <∗> many1 ((λx y→ y)<$> sep <∗> p)

c) sepBy p sep = (:)<$> p <∗> sep <∗> sepBy p sep <|> succeed []

d) sepBy p sep = (:)<$> p <∗> option ((λx y→ y)<$> sep <∗> p) []

•

3

Solution 5. a). ◦
An AVL tree is a classical data structure, designed in 1962 by Georgy Adelson-Velsky

and Evgenii Landis. In an AVL tree, the heights of the two child subtrees of any
node differ by at most one; if at any time they differ by more than one, rebalancing
is done to restore this property. The datatype AVL is defined as follows in the module
Data.Tree.AVL.

data AVL e = E — Empty Tree
| N (AVL e) e (AVL e)— right height = left height + 1
| Z (AVL e) e (AVL e)— right height = left height
| P (AVL e) e (AVL e) — left height = right height + 1

6 (5 points). What is the algebra type for the datatype AVL?

a) type AVLAlg e r = (r, r→ e→ r, r→ e→ r, r→ e→ r)

b) type AVLAlg r = (r, r→ r→ r→ r, r→ r→ r→ r, r→ r→ r→ r)

c) type AVLAlg e r = (r, r→ e→ r→ r, r→ e→ r→ r, r→ e→ r→ r)

d) type AVLAlg r = (r, r→ r→ r, r→ r→ r, r→ r→ r)

•

Solution 6. c). ◦

7 (5 points). How do you define the function foldAVL, the standard fold on the datatype
AVL?

a) foldAVL (e, n, z, p) = fold where
fold E = e
fold (N l m r) = n (fold l) (fold m) (fold r)
fold (Z l m r) = z (fold l) (fold m) (fold r)
fold (P l m r) = p (fold l) (fold m) (fold r)

b) foldAVL (e, n, z, p) = fold where
fold E = e
fold (N l m r) = n l m r
fold (Z l m r) = z l m r
fold (P l m r) = p l m r

c) foldAVL (e, n, z, p) = fold where
fold E = e
fold (N l m r) = n (fold l) m (fold r)
fold (Z l m r) = z (fold l) m (fold r)
fold (P l m r) = p (fold l) m (fold r)

4

d) foldAVL (e, n, z, p) = fold where
fold E = e
fold (N l m r) = n l (fold m) r
fold (Z l m r) = z l (fold m) r
fold (P l m r) = p l (fold m) r

•

Solution 7. c). ◦

8 (5 points). The height of an AVL tree is an essential concept in AVL trees. How do you
define the function heightAVL as a foldAVL?

a) heightAVL = foldAVL (e, n, z, p) where
e = 0
n l m r = 1 + heightAVL r
z l m r = 1 + heightAVL r
p l m r = 1 + heightAVL l

b) heightAVL = foldAVL (e, n, z, p) where
e = 0
n l m r = 1 + max (heightAVL l) (heightAVL r)
z l m r = 1 + max (heightAVL l) (heightAVL r)
p l m r = 1 + max (heightAVL l) (heightAVL r)

c) heightAVL = foldAVL (e, n, z, p) where
e = 0
n l m r = 1 + r
z l m r = 1 + r
p l m r = 1 + l

d) heightAVL = foldAVL (e, n, z, p) where
e = 0
n l m r = 1 + foldAVL (e, n, z, p) r
z l m r = 1 + foldAVL (e, n, z, p) r
p l m r = 1 + foldAVL (e, n, z, p) l

•

Solution 8. c). ◦

5

9 (5 points). Suppose we have an AVL-tree with integers, and an environment that maps
integers to strings. We want to replace the integers in the AVL-tree by their correspond-
ing strings in the environment. You can use the function lookup :: Env → Int → String
to look up strings in the environment. Define the function

replace :: AVL Int→ Env→ AVL String

that replaces all integers in an AVL-tree by the strings to which they are bound in the
environment.

a) replace env = foldAVL (e, n, z, p) where
e = E
n = λl m r→ N l (lookup env m) r
z = λl m r→ Z l (lookup env m) r
p = λl m r→ P l (lookup env m) r

b) replace = foldAVL (e, n, z, p) where
e = λenv→ E
n = λenv l m r→ N (l env) (lookup env m) (r env)
z = λenv l m r→ Z (l env) (lookup env m) (r env)
p = λenv l m r→ P (l env) (lookup env m) (r env)

c) replace = foldAVL (e, n, z, p) where
e = λenv→ E
n = λl m r env→ N (l env) (lookup env m) (r env)
z = λl m r env→ Z (l env) (lookup env m) (r env)
p = λl m r env→ P (l env) (lookup env m) (r env)

d) replace env = foldAVL (e, n, z, p) where
e = E
n = λl m r→ N (l env) (lookup env m) (r env)
z = λl m r→ Z (l env) (lookup env m) (r env)
p = λl m r→ P (l env) (lookup env m) (r env)

•

Solution 9. c). ◦

10 (5 points). Consider the following language:

L = {x | x ∈ {a, b}∗, length x is odd, bb is a substring of x}

Which of the following automata, with start state S, generates L?

6

a)

BASstart

CD

b b

a, b a, ba, b a, b

b)

BASstart

CD E

b b

a, b a, ba, b a, b

b b

c)

BASstart

CD E

b b

a, b a, ba a

b b

d) All three automata generate L.

•

Solution 10. b). (abb is not accepted by a, and all strings starting with ba are not ac-
cepted by c) ◦

7

Open answer questions

On wit.ai (nowadays owned by Facebook) you can create your own chatbots. Here is
an example discussion with a chatbot I created on wit.ai:

The wit.ai website receives many chatbot discussions, and analyses these. To analyse
a discussion, it has to be parsed. The concrete syntax of the above discussion looks as
follows:

Client:

Ja, we moeten het ook nog even over de meivakantie hebben

Bot:

Ach ja, dat is ook zo

Client:

Wat zouden we allemaal kunnen doen?

{Onderhandelen=5

,relatie=5

}

Bot:

We hebben een week, niet? Laat in mei is het bijna overal al goed weer

Client:

Ja, Parijs lijkt me heerlijk

{Onderhandelen=-5

,relatie=-5

}

Bot:

Nou dan moet dat maar

A chatbot-discussion consists of a list of alternating statements between a Client and a
Bot, where the Client starts the discussion. Each statement starts with an identifier of
who speaks (Bot or Client), followed by a colon, followed by spaces and/or newlines,
and then a sentence. The Client statements may be followed by scores on a number
of parameters, where parameters and scores are separated by an ‘=’. The scores are
presented between braces { and }.

8

wit.ai
wit.ai
wit.ai

11 (15 points). Give a concrete syntax (a context-free grammar) of this language for
chatbot-discussions. You may use a non-terminal symbol called String to recognise the
content of a sentence (a string not containing a newline), and a non-terminal called
Integer to recognise a score. Describe the language as precisely as possible, but you may
ignore occurrences of spaces (you may include them as well). •

Solution 11.

Discussion→ (Client Bot)∗

Client → "Client:\n" String "\n" ("{" Scores "}\n") ?
Scores → Score "\n" | Score "\n," Scores
Score → Identifier "=" Integer
Bot → "Bot:\n" String "\n"

Here is the above example sentence:

example = client1 ++ bot1 ++ client2 ++ bot2 ++ client3 ++ bot3
client1 = "Client:\n Ja, we moeten het ook nog even over de meivakantie hebben\n"

bot1 = "Bot:\n Ach ja, dat is ook zo\n"

client2 = "Client:\n Wat zouden we allemaal kunnen doen?\n "++ "{"++ scores2 ++ "}\n"

scores2 = "Onderhandelen=5\n ,relatie=5\n "

bot2 = "Bot:\n We hebben een week, niet? "++ bot2a
bot2a = "Laat in mei is het bijna overal al goed weer\n"

client3 = "Client:\n Ja, Parijs lijkt me heerlijk\n "++ "{"++ scores3 ++ "}\n"

scores3 = "Onderhandelen=-5\n ,relatie=-5\n "

bot3 = "Bot:\n Nou dan moet dat maar\n"

Marking
a (-1): Parameter defined as a String (should be an Identifier)
b (-1): No newlines between Bot and Client statements (inside the statements the new-
lines do not have to be present)
c (-3): A Bot statement may be followed by a score
d (-3): The Bot and CLient statement are not necessarily alternating
e (-2): The Parameter non-terminal is undefined
f (-2): Scores are not optional
g (-1): No comma’s between scores
h (-1): No braces around scores
i (-1): Minor errors
j (-3): Bot: and Client: do not appear in the grammar
k (-5): Pretty printer instead of grammar
l (-2): The grammar only allows exactly two parameters
m (-1): Productions are not written with an→, but with an = or a :
n (-1): One comma too many in the scores
o (-4): Either a score or a sentence, but not both

9

p (-2): Scores appear after the Bot instead of the Client
q (-2): Identifier or String instead of Bot and Client
r (-3): The Parameter= part in the score is not described
s (-1): The : after Bot and CLient is not described
t (-1): The = in the score is not described
u (-2): Only two particular scores are modelled
v (-6): No keywords or characters are described
w (-3): Scores can be nested
x (-1): Client and Bot appear in the wrong order

◦

12 (15 points). Define an abstract syntax (a (data) type Discussion in Haskell) that cor-
responds to your concrete syntax given as an answer in Task 11, which you can use to
represent a chatbot-discussion in Haskell. •

Solution 12.

type Discussion = [(Client, Bot)]
type Client = (Sentence, Maybe Scores)
type Sentence = String
type Scores = [Score]
type Score = (Identifier, Int)
type Bot = String
type Identifier = String

Marking
a (-2): Identifier instead of String
b (-2..-6): different syntactic errors, such as omitted tuple-parentheses/comma’s; appli-
cation of base types, etc
c (-3): type-definition has a constructor
d (-3): type-definition has a choice between constructors
e (-3): multiple constructors with the same name
f (-1): Maybe modelled with lists
g (-3): data-constructors considered types
h (-5): modelling concrete syntax for Bot and Client in a type
i (-3): String instead of Int for a score
j (-1): using data where type would have been better
k (-1..-10): miscellaneous mistakes
l (-1): integer instead of Int
m (-3): Maybe modelled with a separate datatype
n (-2..-10): not following the concrete syntax (often no alternating list anymore, but
many other mistakes)
o (-3): data with no constructors

10

p (-2..-15): concrete syntax instead of abstract syntax
q (-5): many instead of list, some instead of a non-empty list
r (-5): no data or type

◦

13 (20 points). Define a parser pDiscussion :: Parser Char Discussion that parses sentences
from the language of chatbot-discussions. Define your parser using parser combina-
tors. •

Solution 13.

pDiscussion :: Parser Char Discussion
pDiscussion = many ((,)<$> pClient <∗> pBot)
pClient :: Parser Char Client
pClient = (,)

<$ tokensp "Client:\n"

<∗> pSentence
<∗ tokensp "\n"

<∗> optional (pack (tokensp "{") pScores (tokensp "}\n"))

pBot :: Parser Char Bot
pBot = tokensp "Bot:\n"

∗> pSentence
<∗ tokensp "\n"

pScores :: Parser Char Scores
pScores = listOf (pScore <∗ tokensp "\n") (tokensp ",")

pScore :: Parser Char Score
pScore = (,)<$> identifier <∗ symbol ’=’<∗> integersp
pSentence :: Parser Char Identifier
pSentence = greedy (satisfy (λc→ (c 6≡ ’\n’)))

spaces = greedy (satisfy (= = ’ ’))
tokensp s = token s <∗ spaces
integersp = integer <∗ spaces
— Parser test case
test = fst $ head $ pDiscussion example

Marking
a (-1..-5): Type errors when building up the abstract syntax
a1 (-3): (:)<$> many . . .
a2 (-3): using a datatype instead of a constructor when constructing abstract syntax
b (-1..-10): does not follow the concrete syntax
b1 (-3): optional (non-)terminals not represented optionally
b2 (-1..-2): forgetting newlines etc

11

c (-1..-5): typos, obvious confusion
c1 (-2): option misses second argument
d (-1..-5): erroneous usage of parser combinators

◦

12

